Log In
Sign Up
Romania
Citizenship:
Romania
Ph.D. degree award:
1982
Mr.
Toma
Stoica
Dr.
Senior Researcher
-
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Researcher | Scientific reviewer
>20
years
Web of Science ResearcherID:
AAS-4751-2021
Personal public profile link.
Curriculum Vitae (05/07/2021)
Expertise & keywords
Solid state
Semicondcutors
Photonics
nanometals
2D materials
Quantum phenomena
Alloys
Semiconductor physics and devices
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Multifunctional optoelectrical sensor based on two-dimensional MoS2 atomically thin layers grown by selective nucleation
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2021-2457
2022
-
2024
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://infim.ro/en/project/multifunctional-optoelectrical-sensor-based-on-two-dimensional-mos2-atomically-thin-layers-grown-by-selective-nucleation/
Abstract:
Optoelectrical multifunctional sensors will be obtained based on selective nucleation and growth of two-dimensional 2D-MoS2 atomically thin layers on SiO2/Si patterned substrates, by using Physical Vapor Deposition method. The substrate patterning will be performed by deposition of Mo pads before growth of MoS2 flakes. The precise localization of selectively grown 2D-MoS2 flakes allows the fabrication of the optoelectrical sensors by deposition of metallic contacts using photolithographic technique with alignment to the patterns of the substrate. The atomically thin 2D-MoS2 layers are very sensitive to external excitation as for example light illumination or adsorbed molecules on the 2D-MoS2 free layer surface. Using the Si substrate as gate electrode, the (photo)sensitivity of the device can be controlled and enhanced by field effect. Based on the high sensitivity expressed by electric and photoelectric behaviour, the 2D-MoS2 optoelectrical sensors are recommended for many practical applications, as for example biosensors (protein detection, DNA compatibility, acetone in human breath for diabetes, etc) and chemical sensors for pollution monitoring. The validation of the optoelectrical sensor demonstrator in this project according to TRL 3 includes the testing experiments on spectral photocurrent, as well as on electrostatic doping in 2D-MoS2 layers by field effect and adsorbed acetone molecules.
Read more
Multilayered floating gate nonvolatile memory device with GeSi nanocrystals nodes in nanocrystallized high k HfO2 for high efficiency data storage
Call name:
P 4 - Proiecte de Cercetare Exploratorie, 2020
PN-III-P4-ID-PCE-2020-1673
2021
-
2023
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://infim.ro/en/project/multilayered-floating-gate-nonvolatile-memory-device-with-gesi-nanocrystals-nodes-in-nanocrystallized-high-k-hfo2-for-high-efficiency-data-storage-multigesincmem/
Abstract:
The project goal is to fabricate a multilayered floating gate (FG) nonvolatile memory device (ML NVM) with charge storage nodes of GeSi nanocrystals (NCs) embedded in nanocrystallized high k HfO2 matrix (capacitor of top contact/ gate HfO2/ n layers of GeSi NCs in HfO2 as FG/ tunnel HfO2/ Si wafer/ bottom contact, n=1 to 5 for the 5 versions NVM1-NVM5). We target in project to obtain high performance ML NVMs (memory window >4 V, charge loss ratio
Read more
Broadband photodetector based on hydrogenated GeSn layers.
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-4468
2020
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/broadband-photodetector-based-on-hydrogenated-gesn-layers/
Abstract:
The main goal of this project is the obtaining by magnetron sputtering (MS) deposition and hydrogenation of GexSn1-x:H alloy, a new photosensitive material for fabrication of high sensitive broadband photodetectors. By increasing the Sn concentration in GeSn alloy, the bandgap is narrowed and changed from indirect to direct bandgap semiconductor, making GeSn a good candidate for photodetectors with extended sensitivity to short-wave infrared range (SWIR). At international level, the hydrogenation of GexSn1-x to obtained amorphous and nanocrystalline GexSn1-x:H represents the novelty of the project proposal. The role of hydrogen in GexSn1-x:H alloy is to passivate the structural unintended defects, in order to increase the photosensitivity. This is similar to other semiconductors based on group IV of elements (a-Si:H and a-SiGe:H) intensively studied and reported in literature. Two different technological routes of obtaining GexSn1-x:H will be investigated: i) MS deposition of GexSn1-x films with various Sn content followed by hydrogen plasma treatment at different annealing temperatures; ii) direct deposition of GexSn1-x:H by reactive MS in atmosphere of hydrogen diluted in argon. In both cases, the nanocrystallization will be obtained by in-situ annealing during MS deposition or ex-situ by RTA treatment. For achieving the final goal that of obtaining a broadband photodetector with high sensitivity in SWIR, complex characterizations of GexSn1-x:H layers will be performed to find out the optimal technological parameters of the demonstrator. The demonstrator will be functionally tested in the lab according to TRL3. Such photodetectors with high sensitivity in SWIR are imperatively desired to replace the actual market devices based on toxic materials PbS and InGaAs. The results of the project activities may serve to future research on GexSn1-x:H for other practical applications as for example tandem a-SiGeSn:H solar cells.
Read more
Non-volatile memory based on ferroelectric HfO2
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-0205
2020
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
https://infim.ro/en/project/non-volatile-memory-based-on-ferroelectric-hfo2-ferohafomemo/
Abstract:
The project scope is to fabricate a nonvolatile memory (NVM) demonstrator based on ferroelectric HfO2 with targeted parameters of 1.5–2 V memory window and good retention, starting from TRL 2 up to TRL 3. This device benefits from ferroelectric HfO2 advantages: low influence of parasitic charge trapping on NVM performance (high memory window of 1.5–2 V); CMOS compatibility; lateral and vertical gate-stack scaling; low power operation. The project objectives are: O1) magnetron sputtering deposition of NVMs in 3 versions (V1-V3) using 2 approaches of undoped and Ge-doped HfO2: V1) HfO2/Hf/HfO2/ Si (100), V2) (HfO2/Hf)n/ Si (100) with n = 1 and 2, V3) (HfO2/ZrO2)n/ Si (100); O2) Obtaining ferroelectric HfO2 or HfZrO phase in NVMs by post-deposition rapid thermal annealing (RTA) performed on versions V1-V3 and consolidation of ferroelectricity by post-metallization annealing (PMA); RTA and PMA represent new solution; O3) Obtaining good contacts (Pt, Al); O4) Developing test samples completely characterized (NVM properties, morphology, structure); O5) Fabrication of NVM demonstrator “metal contact/ferroelectric HfO2 or HfZrO/Si (100)/metal contact”; testing of functional parameters/characteristics at TRL 3. The project is beyond state of art and has high level of novelty as it proposes new solutions of new advanced materials and new technological approaches for NVM fabrication: *controlling density of O vacancies in HfO2 by controlling Ar/O2 ratio during deposition and by depositing Hf layer between/near HfO2 layers (V1, V2); *Ge doping of HfO2 and HfZrO (V1-V3); *tailoring layers thicknesses in V3. Results: i) scientific ones - 1 ISI paper and dissemination at prestigious international conferences in the field by 2 papers; ii) technological - 1 patent application. Experienced and postdoctoral researchers ensure the project accomplishment based on their high level expertise, and project team will gain new competences and EU and international visibility in NVMs field.
Read more
Advanced nanoelectronic devices based on graphene/ferroelectric heterostructures (GRAPHENEFERRO)
Call name:
P 4 - Proiecte Complexe de Cercetare de Frontieră
PN-III-P4-ID-PCCF-2016-0033
2018
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.imt.ro/grapheneferro/
Abstract:
Applications such as high-frequency and neuromorphic circuits, optoelectronic/plasmonic detection of biomolecules or thermo-opto-electronics energy harvesting, require tunable and reconfigurable functionalities. Graphene is suitable for these applications because of electrostatic doping, its optical constants being tuned via gate voltages. However, oxide substrates limit the mobility in graphene to few thousands cm2/V•s. On the contrary, the mobility in graphene/ferroelectric (G/F) heterostructures is 2-3 orders of magnitude larger. The groundbreaking nature of the project is based on the possibility of significantly enhancing the functionality of graphene-based transistors/devices by using crystalline ferroelectric substrates instead of common oxides or SiC substrates. The G/F heterostructures allow: (i) the achievement of very high mobilities in G/F field effect transistors (FETs), which push the transistor gain in the 0.3-1 THz range, far above 70 GHz at which the maximum gain is attained nowadays, (ii) the fabrication of uncooled tunable detectors working in the THz and IR, (iii) the exploitation of the hysteretic resistance behaviour, essential for neuromorphic applications such as artificial synapses, (iv) the fabrication of reconfigurable microwave circuits, and (v) of tunable thermoelectronic devices, since graphene displays a giant thermoelectric effect. The project will consist of the design, fabrication and testing of groundbreaking, innovative nanoelectronic devices, in particular ultrafast electronic devices, neuromorphic circuits for computation, reconfigurable and harvesting devices, all based on the outstanding physical properties of G/F heterostructures. All fabrication techniques for growing graphene-ferroelectric heterostructures in this project should be scalable at wafer scale. The project is implemented by a consortium of 3 national R&D institutes and the leading Romanian university, which have the necessary advanced infrastructure.
Read more
New advanced nanocomposites. Technological developments and applications
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0871
2018
-
2021
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU OPTOELECTRONICA INOE 2000 INCD (RO); UNIVERSITATEA DE VEST TIMISOARA (RO); ACADEMIA ROMANA FILIALA TIMISOARA (RO); UNIVERSITATEA BABES BOLYAI (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU FIZICA TEHNICA-IFT IASI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA "DUNAREA DE JOS" (RO); UNIVERSITATEA TRANSILVANIA BRASOV (RO); Ministerul Apararii Nationale prin Centrul de Cercetare Stiintifica pentru Aparare CBRN si Ecologie (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/project/kuncser_noi_directii_de_dezvoltare_tehnologica_si_utilizare_nanocompozite_avansate_47pccdi_2018
Abstract:
The development of complex nanocomposite materials consisting of different matrices (polymer-like, oxides, intermetallics, liquids) functionalized by different nasnostructured additions (carbon allotropes, magnetic nanoparticles with different organizations, nanostructured semiconductors, etc.) is the aim of this project. The unique combinations of interacting nanophases offeres to the hybrid nanocomposite material new or enhanced proprieties of high interest for applications. In this context, according to the previous experience of the involved teams, the complex project (formed by 4 component projects) is focused on the development of new optimized nanocomposite systems to be included in experimental demonstrators or final products to be transferred to economical companies. The project will contribute both to an increased scientific visibility of the partners as well as to enhancing the institutional performances by the development of new technical and scientific capacities.
Read more
Optoelectric devices based on SiGeSn nanocrystals in oxide matrix
Call name:
P 4 - Proiecte de Cercetare Exploratorie
PN-III-P4-ID-PCE-2016-0552
2017
-
2019
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/ro/projects/dispozitive-optoelectrice-pe-baza-de-nanocristale-de-sigesn-matrice-oxidica
Abstract:
The goal of the project is the fabrication of optoelectric devices based on SiGeSn nanocrystals (ncs) embedded in oxide matrix for NIR-VIS range. We envisage two devices, optical sensors and photovoltaic devices that are completely new, never reported in literature. A new approach of Sn alloying of currently investigated SiGe ncs will be used.
The project specific objectives are: O1) fabrication of test samples based on SiGeSn ncs embedded in SiO2 for optical and photovoltaic devices (magnetron sputtering deposition, thermal treatment, electrical contacts); O2) complex characterisation of test samples for structure, composition, crystallinity, ncs morphology, electrical and optical properties and their correlation; O3) simulation of optical sensor and photovoltaic device; O4) fabrication and characterisation of optical sensor; O5) fabrication and characterisation of photovoltaic device; O6) performances evaluation of optical sensor and photovoltaic device based on SiGeSn ncs. By implementing these objectives, the project brings original and novel results beyond the state of the art.
The project has scientific and technological impact (elucidating ncs formation in ternary alloys, photogeneration and collection of electric charges; fabricating devices with targeted parameters), economic and social impact (less expensive and eco-friendly technologies for large scale production of optelectric devices; formation of PhD students in project field). The project results will be published in 5 ISI papers and in 1 patent application.
Equipments from the infrastructure of National Institute of Materials Physics will be used for project implementation.
Project leader has important contributions in the scientific and technological fields directly related to the project topic, i.e. Nanostructured films, Photovoltaic devices and Nanoscale strain and its effect on electronic properties. Team members have relevant and complementary expertise in the project field.
Read more
Nano-Structured GeSn Coatings for Photonics
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
M.ERANET-3107-GESNAPHOTO
2016
-
2019
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU OPTOELECTRONICA INOE 2000 INCD (RO); OPTOELECTRONICA - 2001 S.A. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/projects/nano-structured-gesn-coatings-photonics-gesnaphoto
Abstract:
The objective of the project is manufacturing of nano-structured GeSn films for optical detection- emission in the short-wave infrared (SWIR) range (1-3µm). The novelty of the project consists in nano-structuring of layers containing GeSn in order to create GeSn nano-crystals with control of the size and Sn content, for obtaining high sensitivity. This material is a new group IV advanced coating material based on alloying Ge and Sn elements which extends the IR photonic range of Ge. The most important property is the transition into direct bandgap semiconductor for moderate Sn concentration, of critical importance for photonics of group IV semiconductors. Thus, the project deals with an alternative solution to the present III-V IR technology, a solution which is less expensive, environmentally friendly and compatible with Si technology. The IR detection-emission has many practical applications as for example night vision, medical applications, automotive, aviation, etc.
Read more
High photoconductive oxide films functionalized with GeSi nanoparticles for environmental applications
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
M-ERA.NET-PhotoNanoP
2016
-
2018
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); OPTOELECTRONICA - 2001 S.A. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/projects/PhotoNanoP
Abstract:
A new solution for obtaining a new advanced material (SiO2, TiO2 films functionalized with GexSi1-x nanoparticles) with targeted photoconductive properties in VIS-NIR is proposed. This material is able to spectrally discriminate between dry, wet and icy asphalt, for reducing traffic accidents. The proposed approach and material are innovative, and technological and scientific results are original, leading to 1 patent application, 3 ISI and 4 conference papers. The project creates the frame for increasing EU cooperation, developing a pan-EU partnership between 2 research institutes, a university and 2 SMEs. Each partner will gain an advanced position in own activity field becoming more visible at EU and international level. All partners will have economic benefits by winning competitive advance in photodetector market and scientific benefits. The new material is versatile as PHC properties can be tuned leading to other environmental, biomedical, food and optosecurity applications.
Read more
Photo-Electric Capacitor Memory based on Ge-Nanocrystals
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2016-0286
2017
-
2018
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/PhotoElCaNanoMem
Abstract:
The main goal of the project is the fabrication of photo-electric Ge nanocrystals-based memories for eco-nanotechnology applications, combining an optical sensor with a non-volatile electronic memory in a single new device. In such device, both the electric field and the light can control the charge injection into the Ge nanocrystals (NCs) and thus the memory states of the device. It may work as a photo-electric sensor floating-gate memory, or a photo-electro switch floating-gate memory for event detection reversible device, with applications to security systems, intelligent home systems, integrated silicon photonics, etc. The used materials and fabrication technology are eco-friendly and compatible with silicon technology. In this project, the demonstrator is designed as a transparent electrode-oxide-semiconductor (MOS-type) capacitor memory with Ge-NCs in oxide matrix, NCs being coupled to the Si-substrate through a thin tunnel oxide. The active layers will be fabricated by magnetron sputtering deposition followed by rapid thermal annealing. The charge exchange between the substrate and the Ge-NCs can be controlled by electric field applied between the substrate and a gate (top) contact. At intermediary voltages, the capacitance-voltage characteristic shows hysteresis. The charge retention can be optimized for long term or dynamic memory. For top-illuminated demonstrator proposed by this project, a transparent electrode will be used and the retention dynamic will be optimised for photo-electric control of charge storage. The device operation is based on the generation of electrons and holes pairs under illumination and by this activation of the tunnelling process resulting in changes of the hysteresis states. The novelty of the proposed project consists in realization of a photo-sensitive Ge-NCs floating gate memory, tuning the structure of the demonstrator in order to obtain simultaneously electrical and optical control of the memory effect.
Read more
Novel nanostructured semiconductor materials based on Ge nanoparticles in different oxides for aplications in VIS-NIR photodetectors and nonvolatile memory devices
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1120
2012
-
2016
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU OPTOELECTRONICA INOE 2000 INCD (RO); INTERNET S.R.L. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/ro/NODE/3960
Abstract:
The primary aim is to obtain novel nanostructured semiconductor materials based on Ge nanoparticles (nps) with optimized properties to be used in photodetectors for the visible and infrared (VIS-NIR) ranges, and also in nonvolatile (NV) memory devices. This aim will be realized in the following objectives: A) Preparation and characterization of nanostructured films based on Ge nps in SiO2, TiO2, HfO2, with optimized photoconductive and electrical properties; B) Preparation and complex characterization of experimental models for VIS-NIR photodetector and NV memory using the optimized materials; C) Fabrication of VIS-NIR photodetector and NV memory to prove experimentally the concepts of the project and its applications; D) Estimation of the economic impact.
Based on the material research (Phase 1), and on the investigations of structures and experimental models (Phase 2), two prototypes will be fabricated in Phase 3, one for the VIS-NIR photodetector, and one for the NV memory, with corresponding technical specifications. Thus, we will prove that the novel nanostructured materials based on Ge nps obtained in this project are suitable for VIS-NIR photodetectors and NV memory devices. Also, the technical and economical analyses documentation and feasibility studies will be performed (Phase 4).
The two devices will be integrated into a system for event identification and an automated test and measurement system for industrial applications and manufacturing devices will be realized.
The results obtained by achieving the project objectives have a high level of originality and novelty. Therefore, the scientific results will be promoted in 5 papers in peer-reviewed journals, and in 7 communications at prestigious international conferences. The technological results will be the object of 3 patent applications.
Young students will be involved in the project, and this will have a formative effect (Master Dissertations and/or PhD theses).
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.604, O: 278]