Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
Teodor
Sandu
Researcher
-
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Researcher
9
years
Personal public profile link.
Curriculum Vitae (25/06/2023)
Expertise & keywords
Polymers
Biopolymers
Enzymes
development of new polymer-based materials: supramolecular (co)polymers assemblies for industrial applications; polymer-functionalized nanoparticles
Bacteria
Projects
Publications & Patents
Entrepreneurship
Reviewer section
“New drug delivery systems based on micro/nanogel composites containing natural bioactive substances”
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-0953
2015
-
2017
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.icechim-rezultate.ro/proiect.php?id=22
Abstract:
The overall objective of the project consists of obtaining micro/nanoparticles of covalently crosslinked hydrogels based on polyethylene glycol and aliphatic polyamines (injectable micro/nanogels) having embedded both natural nanozeolites but also of natural bioactive substances in their polymer structure, with potential pharmaceutical applications. These new micro/nanogel composite structures are of great interest as they are aimed at being used as devices for subcutaneous or intravenous injection, ensuring the release of bioactive substances in hard-to-reach areas (by macroscopic hydrogels). The role of natural nanozeolites incorporation is to allow for a much slower and controlled release of the embedded active substances and to improve the viscoelastic features of hydrogels. Nowadays bioactive substances play an important role in the development of controlled release systems in medicinal chemistry for the production of new drugs with fewer side effects. The use of phytoextracts as bioactive substances is a big challenge of the project proposal. These new micro/nanodevices with controlled release will have significant influence, both nationally and internationally on the scientific, social and economic field. The results will be disseminated as follows: three articles published in ISI journals; three scientific communications at international conferences, and patenting of any original aspect.
Read more
Wastewaters treatment through flocculation- oxidation processes mediated by red mud derived flocculants and catalysts
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0177
2014
-
2017
Role in this project:
Coordinating institution:
UNIVERSITATEA BUCURESTI
Project partners:
UNIVERSITATEA BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU METALE NEFEROASE SI RARE - IMNR (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); EDAS-EXIM SRL (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.unibuc.ro/depts/chimie/chimie_organica_biochimie_si_cataliza/PROIECTE-DE-CERCETARE/pn-ii-pt-pccaPN-II-PT-PCCA-2013-4-0177-2013-4-01770/
Abstract:
The project aims the development of an innovative technology for the treatment of wastewaters with high organic loading which may occur from different sources such as: food processing, stock farming, tanneries, oil pumping stations, engine cleaning stations.
The ground principle for the new technology is fighting pollution by valorizing the useful components from pollutants, or briefly ”Pollutants fighting pollution”. In this way the benefic impact on the environment is practically doubled. On one hand the volume of industrial wastes polluting the soil and waters is diminished, and on the other hand after the treatment clean water is obtained while decreasing the consumption of chemical grade reagents utilized in water treatment, as well as the costs related to the consumption of energy, raw and auxiliary materials needed for their manufacture avoiding also the emissions of other pollutants.
The industrial waste which is going to be valorized for this purpose is the red mud which is yielded in huge quantities from alumina manufacturing by Bayer process. Red mud is a highly alkaline residue (pH >11,5) with high concentration of iron oxides (40-50%) along with other oxides such as Al2O3, SiO2, TiO2, Na2O, CaO. It has elevated sodium concentration (>30 g/kg), and soluble alkalinity (≈30 g/kg as equivalent CaCO3). Due to its alkalinity and high content of fine-grained particles (>90% have sizes
Taking into account the high concentration of iron oxides in red mud waste, this project aims the utilization of red mud as iron source in order to replace partially the chemical reagents (generally synthesis grade Fe(III) salts) used in the obtaining of coagulation-flocculation-oxidation agents and advanced oxidation catalysts used in wastewaters treatment, laying the grounds for a sustainable green technology for the treatment of high organic loaded wastewaters.
The following original aspects that were not investigated up to now will be addressed:
a) the utilization of red mud suspensions for the generation of ferrate anions (FeO42-) which are the most powerful oxidation agents that may be used in water treatment (as it may be seen from the variation of the redox potentials: FeO42- (2,2eV) > O3 (2,03 eV) >H2O2 (1,78 eV) > MnO42- (1,68 eV) > Cl2 (1,36 eV) > O2 (solved) (1,23 eV) > ClO2 (0,95 eV)). The ferrate anions are considered to be a „green oxidant” since after the ferrate (VI) treatment there are no toxic by-products and following the redox cycle Fe(VI) is reduced to Fe(III) which is a very good coagulant/flocculant. Subsequently, in the stage following the oxidation it may serve as coagulant/flocculant able to remove the non-degradable impurities.
b) the obtaining of red-mud derived ceramic foams by gel-casting method - water treatment advanced oxidation catalysts
c) the obtaining of nanostructured amphiphilic magnetic materials - carbon nanofibers/red mud ceramic foams by chemical vapor deposition (CVD) method – efficient adsorbents of hazardous organic contaminants in wastewaters.
d) integration of the above mentioned obtained materials in the technology for the treatment of wastewaters with high organic loading.
The project enables the partnership between public and private areas in the priority domain 3- Environment. The partnership includes 5 participants: an university, 3 national research-development institutes, a private company EDAX EXIM SRL provider of equipments and specific tasks in the domain of wastewaters and water treatments which co-finances the project. The participation of the co-financer has the role to create the mechanisms for implementing the technologies developed by this project.
Read more
DEVELOPMENT OF MULTIPLE AND SELECTIVE SENSOR FOR DETECTION OF REPRESENTATIVES EXPLOSIVES
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0474
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO); Academia Tehnica Militara (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); MIRA TELECOM S.R.L. (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://sensorex.incemc.ro/
Abstract:
Globalization of terrorism became a reality that can not be disputed, a threat to national and international security and, thus, a phenomenon under the responsibility of the entire international community. Terrorist threat, theatres of operations with explosive traps everywhere, with the possibility of using biological weapons of various viruses, drugs, etc are a constant threat to the civilian population, unwittingly victim of varied interests. It is an ongoing concern of many laboratories in the world to detect traces of explosives in the atmosphere, in order to minimize the risks arising from them. To avoid or prevent serious incidents that could endanger people's lives, EU adopted new security rules. These rules apply to security checkpoints at airports, the senior public institutions, in the cultural and artistic events with massive participation, etc. However, there are situations in which all efforts to prevent terrorist acts are not sufficiently effective, creating holes that are exploited by potential attackers. Therefore, rapid detection of explosive compounds is of great interest given the need to prevent any human casualties and material damages caused by their use in different ways and for destructive purposes. The principle SENSOREX will bring an additional performance in the field of detection devices for dangerous substances with the low response time, high specificity, greater functionality and last but not least a low production price. Practical relevance of the project subject is to develop innovative products and manufacturing processes that underlie the development of sensitive, selective, reliable and low cost sensors detection of explosives. Appearance is very important from the perspective of efficient procedures for prevention of terrorism threats by using them in areas where existing equipment besides being very expensive, are almost impossible to use due to ergonomic aspects, reducing processing time suspicious persons and packages various strategic points and last but not least reduce additional costs. The main objective of SENSOREX project is to develop through this national partnership, a sensor with high sensitivity detection of explosives traces . Implementation status of this sensitive platform will be a sensor – demonstrator model tested and calibrated with low response time, high sensitivity and specificity, easy to use and interpreted by a non-specialist user and not least a low cost. Progresses that SENSOREX project brings through its results are: innovative methodologies for obtaining titanium dioxide films and molecularly imprinted polymers; creating scientific premises for serial production of a device with high sensitivity to reduce the most important barriers to personal and group security; final product of the project, sensor – demonstrator model, by its future implementation in production strategy of the private company, partner in this project, it will cover a hole on external and internal market of the profile products.
Read more
Cellular materials with thermal insulation and fire resistance properties, via energetic efficient recycling process of PET wastes, for minimizing heat loss in civil and industrial buildings
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1388
2014
-
2017
Role in this project:
Coordinating institution:
CENTRUL DE CHIMIE ORGANICA AL ACADEMIEI ROMANE "C.D.NENITESCU"
Project partners:
CENTRUL DE CHIMIE ORGANICA AL ACADEMIEI ROMANE "C.D.NENITESCU" (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); EUROPLASTIC S.R.L. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://ccocdn.ro/index.php?id=21
Abstract:
The present project proposal refers to a sustainable process of obtaining rigid polyurethane (PUR) foams, cellular materials with excellent thermal insulating and fire resistance properties. The process consists in chemically recycling poly(ethylene terephthalate) (PET) wastes, using as depolymerization and/or modification agents renewable materials, mainly carbohydrates and natural oils derivatives. Novel modified organocatalytic systems, different from conventional metallic compounds, will be developed and optimised in order to increase process performance, maximize energy efficiency and eliminate the need for solvents
The scientific challenge of the project consists in tailoring the novel catalytic systems, in order to drastically reduce energy consumption associated to the depolymerization reactions of PET wastes (in particular in the presence of some renewable materials), and enhance catalytic activity for these specific reactants, by using theoretical modelling, as well as experimental studies. In this respect, researh will be conducted in two main directions: i) modifying existing organocatalysts, in order to improve their performance or their stability; ii) proposing new organocatalyst that have not been used yet in catalyzed PET solvolysis. A library of new modified organocatalysts and/or combinations thereof, with synergistic effect, suitable for selective solvolytic attack of PET by various cleavage agents, will be, finally, provided. Optimal versions will be selected, in order to be used to further develop the technology for rigid PUR foams preparation, from PET wastes and renewable resources.
Lab-scale technologies for synthesis of selected catalysts will furnish information, useful for modifying commercial organocatalysts into new structures, or use new organocatalysts for PET chemical recycling, in order to apply such energy efficient technologies, on industrial scale.
The main objective of the project consists in developing a series of oligoester-poliols with tuned chemical structure (i.e. rigid and/or flexible moieties content) and properties (adequate for specific applications), starting from PET wastes and renewable materials, by using the correlations between reaction parameters (including organocatalysts), the products’ chemical structure and target properties. Using these oligoesters and designing the foams formulations, polyurethane and polyisocyanurate thermo-insulating rigid foams with tailored chemical structure will be obtained, adapted for various applications and showing (in some imbodiments) improved physico-mechanical and fire resistance properties The innovative and flexible pilot-scale technology for oligoester-polyols synthesis, using organocatalysts, as well as PET wastes and renewable resources as raw materials, would represent an exemplary case of meeting “green chemistry” standards by drastically reducing experimental conditions, eradicating the need for organic solvents, recycling a plastic waste which is accumulating in landfields and is not biodegradable, and providing, instead, innovative eco-friendly products, for long term applications. A innovative and flexible pilot-scale technology for PUR thermo-insulating rigid foams preparation using the respective oligoester-polyols will be developed, as well.
As a total result, a sustainable technology, with low energy consumption, significantly reducing the price of rigid polyurethane foams, would provide an exceptional solution to replace materials commonly used for insulation in buildings with new materials exhibiting outstanding properties and available for various applications, from building envelope to insulations for utility routes.
Read more
DRUG DELIVERY HYBRIDS BASED ON POLYMERS AND POROUS CLAY HETEROSTRUCTURES
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1432
2012
-
2016
Role in this project:
Coordinating institution:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Project partners:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); CENTRUL DE CERCETARE SI PRELUCRARE A PLANTELOR MEDICINALE PLANTAVOREL SA (RO); METAV - CERCETARE DEZVOLTARE S.R.L. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.tsocm.pub.ro/cercetare/DELPOCLAY
Abstract:
The research project is focused on the synthesis of new hybrid materials based on polymers and various organophylized porous clay heterostructures designed for controlled delivery of drugs which exhibit a low water solubility and high toxicity.
Read more
EXPLOITATION OF SPONTANEOUS FLORA RESOURCES BY NANOTECHNOLOGY FOR THE OBTAINING OF HIGH BIOACTIVE HYPERICIN CONCENTRATES
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-0548
2012
-
2016
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); UNIVERSITATEA BUCURESTI (RO); CENTRUL DE CERCETARE SI PRELUCRARE A PLANTELOR MEDICINALE PLANTAVOREL SA (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.icechim-pd.ro/en/pol_hitech/polimeri_hitech_spoflorahyp_en.html
Abstract:
The naphthodianthrones hypericin and pseudohypericin occur in the flowers and leaves of SJW. Hypericin act as an antibiotic and non-specific kinase inhibitor. Hypericin, is being clinically evaluated as an antiviral agent in the treatment of human immunodeficiency virus (HIV) infection. Hypericin was proven to be anti cholesterol and useful for blood circulation. In addition, hypericin is under research as an agent in photodynamic diagnosis (PDD) and therapy (PDT), of cancer.
The project target is to elaborate the production technologies for molecular imprinting of polymers with hypericin 1 enantiomer and for using these new materials in selective separations (MISPE), in order to obtain high bioactive concentrates of hypericin. This will allow the better exploitation of the resources of spontaneous flora and hereby to obtain by the “green chemistry” approaches dietary supplements able to prevent or to cure some diseases of the population. The main novelty of the project proposal is that it is intended to obtain molecularly imprinted polymer materials using as template the enantiomer 1 of hypericin, the materials being appropriate for preparative extraction of this enantiomer from primary SJW extracts. The second novelty of the project is the identification of technological parameters for MISPE separation of hypericin on the new materials. The third novelty of the project is the obtaining of high bioactive dietary supplements (concentrates) of hypericin. The many original idea involved in the project realization insures the deposition of at least 2 patent askings.
The hypericin concentrates that we intend to produce from St. John’s Wort are a world novelty. Such products are not yielded in Romania or abroad. Their enhanced bioactivity in preventing or curing some very dangerous diseases such as cancer, HIV, blood circulation disorders and depressions, will enable them to penetrate quickly on national and European markets.
Read more
SUPERABSORBENTS BIOPOLYMER MATERIALS FOR AGRICULTURE USES
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-0115
2012
-
2016
Role in this project:
Coordinating institution:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Project partners:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); CENTRUL DE CERCETARE SI PRELUCRARE A PLANTELOR MEDICINALE PLANTAVOREL SA (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.sabiom.ro
Abstract:
The aim of the SABIOM project is to obtain new superabsorbent materials which could be used in agriculture for water reserving and soil conditioning, starting from biopolymers and using especially green chemistry methods.The superabsorbent materials which will be prepared will also have the capacity of active agrochemicals delivery to the plants in order to protect them against different diseases or to enhance their growth. The novelty of this project is to use bacterial cellulose and other biopolymers in order to obtain superabsorbent hydrogels. This choice was determined by the fact that the majority of the superabsorbent polymers used as commercial products are synthetic polymers as crosslinked polyacrylates or polyacrylamide, and hydrolized cellulose polyacrylonitrile (PAN) or starch-PAN graft copolymers. This project is enrolled in the research efforts which are devoted to develop natural-based superabsorbent polymers starting from polysaccharides and polypeptides (proteins).
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.509, O: 210]