Log In
Sign Up
Romania
Citizenship:
Romania
Ph.D. degree award:
2012
Mrs.
Sorina
Garabagiu
PhD
-
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Researcher
Personal public profile link.
Expertise & keywords
Pulsed laser deposition
Thin films
Surface science and nanostructures
Uv-Vis spectroscopy
Electrochemistry
Plasmonic
Fluorescence
physico-chemical characterization of different materials (FTIR, RAMAN, DSC, TGA, DMA, SEM/EDX, XRD, AFM, MO)
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Controlling the electronic properties in heterostructures based on ferroelectric perovskites: from theory to applications
Call name:
P 4 - Proiecte Complexe de Cercetare de Frontieră
PN-III-P4-ID-PCCF-2016-0047
2018
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://infim.ro/en/project/control-of-electronic-properties-in-ferroelectric-perovskite-heterostructures-from-theory-to-applications/
Abstract:
The main objective of the project is to obtain ferroelectric materials with controlled electronic properties at the same level as this properties are controlled in Si. This will be realized by hetero-valent doping, correlated with stress engineering and band gap engineering without affecting, as much as possible, the ferroelectric properties. The main objective is complex and ambitious because, up to date, there was no experimental demonstration that it possible to obtain n or/and p type conduction in epitaxial ferroelectrics. The successful achievement of this objective will open a new domain, that of ferroelectric electronics or ferrotronics, by producing electronic devices of p-n homo-junction type or junction transistors with ferroelectric materials. Two types of materials are envisaged, namely lead titanate-zirconate (PZT with tetragonal structure and a mixed bismuth ferrite (BFO) with bismuth chromit (BCO). In the first case the heterovalent doping will be studied on Pb or Zr/Ti sites with the aim to obtain n and p type conduction. The final goal is to produce a p-n homo-junction based on epitaxial PZT films. In the second case band gap engineering will be tested by varying the Fe/Cr content, and the dominant conduction mechanism will be identified, the goal being to use the material in photovoltaic applications. The activities will contain: theoretical studies regarding the relation between dopants, electronic properties and the ferroelectricity, including self-doping effects or electrostatic doping; target preparation for deposition of thin films; epitaxial growth of the film; characterization activities of the structure and physical properties. Not only classic doping in the target is envisaged but also doping during the epitaxial growth. The consortium is composed of 4 teams from three different institutions, including a number of 14 young researchers full time equivalent.
Read more
High Performance Materials for the next generation Space Thermoelectric Generators
Call name:
PNCDI-III-C3-2016 STAR
2017
-
2019
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://www.itim-cj.ro/pncdi/matspaceteg/
Abstract:
In this project, we will use our recently introduced guidance idea and the concept of band structure engineering in order to search for oxide and silicide materials with high thermoelectric (TE) efficiency as future advanced TE materials for the next generation of space TE generators. These generators need significant improvements in reliability, specific power by a factor of ~2-3, and TE efficiency by a factor of ~1.5-2.5 over the already used generators in the space missions. Employing complementary rational methods for fabrication, characterization and optimization of the theoretically predicted high performance TE materials, we will fabricate thin films and TE thermocouples based on these materials, characterize, and validate the high performance advanced TE materials.
Read more
Magnetoelectric composites with emergent properties for wireless and sensing applications
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1119
2014
-
2017
Role in this project:
Coordinating institution:
UNIVERSITATEA "ALEXANDRU IOAN CUZA" IASI
Project partners:
UNIVERSITATEA "ALEXANDRU IOAN CUZA" IASI (RO); GRADIENT S.R.L. (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU FIZICA TEHNICA-IFT RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://stoner.phys.uaic.ro/projects/national-projects/213-mecomap-pnii-pt-ro.html
Abstract:
The aim of the present multidisciplinary project is to design by modeling&simulation, produce by innovative synthesis methods and various sintering strategies, to investigate the physico-chemical properties at various length scales of a few types of magnetoelectric composites with emergent properties in order to integrate them at industrial scale in a few types of new applications. Two types of devices based on magnetoelectric composites will be produced: (i) miniaturised magnetoelectric tunable reconfigurable antennas based on particulate ceramic composites; (ii) new types of sensors / transducers / actuators / harvesters based on layered magnetoelectric composites. The project will contribute to increase the consortium capacity to approach top research subjects in the field of smart multifunctional materials with high applicative potential. In terms of material science aspects, an important contribution will be given by a complex physico-chemical experimental – modeling approach for understanding the relationship between composition, micro/nanostructural parameters and functional properties of the magnetoelectric composites with different degrees of phase connectivity. The composition, phase interconnectivity and microstructures will be optimised and the best composite structures will be selected for the proposed applications. By considering the dielectric, ferro/piezoelectric and magnetoelectric properties of the produced composites, new magnetoelectric devices will be designed, realised, tested and optimised and the best solutions in terms of both technical parameters and cost efficiency will be implemented as prototypes by the industrial partner. The new devices are expected to contribute to the increase of the company performances by extending its production capacities, by extending the number of high specialised employees and the number of its beneficiaries. The overall scientific goal is to improve the knowledge in the field of multifunctional magnetoelectric composite structures at different levels (macroscopic, mesoscopic and at nanoscale) in order to generate properties beyond the present ones and to integrate them into new magnetoelectric devices with superior characteristics and low cost.
Read more
Core-shell composite nanoparticles based on Fe and Pt having adjustable magnetic, dispersive and functional properties
Call name:
Exploratory Research Projects - PCE-2011 call
PN-II-ID-PCE-2011-3-0876
2011
-
2016
Role in this project:
Coordinating institution:
Institutul National de Cercetare–Dezvoltare pentru Tehnologii Izotopice si Moleculare
Project partners:
Institutul National de Cercetare–Dezvoltare pentru Tehnologii Izotopice si Moleculare (RO)
Affiliation:
Institutul National de Cercetare–Dezvoltare pentru Tehnologii Izotopice si Moleculare (RO)
Project website:
http://www.itim-cj.ro/PNCDI/idei119/index_en.htm
Abstract:
In this project we are focused on synthesis and characterization of various core-shell or multi-shell nanoparticles based on Fe, Pt, conjugate polymers and silica or titania components.
General objective: Synthesis, characterization and applications of various types of Fe and Pt based nanoparticles with adjustable properties involving magnetic, dispersive and functional characteristics. Specific objectives: 1. Synthesis, structural and compositional characterization of multi-shell Fe@FePtL10@Pt nanoparticles; 2. Magnetic characterizations of Fe@FePtL10@Pt nanoparticles; adjustment of the coercive magnetic field based on synthesis – properties relationship; 3. Synthesis, structural and compositional characterization of multi-shell FePtL10@PPy and/or FePtL10@P3HT hybrid nanoparticles; 4. Magnetic characterizations and saturation magnetization adjustment by use of a suitable choice of polymer shells; 5. Synthesis, structural and compositional characterization of multi-shell FePtL10@SiO2 and/or FePtL10@TiO2 core-shell composite nanoparticles; 6. Magnetic characterization dispersion adjustment of FePtL10@SiO2 and/or FePtL10@TiO2 nanoparticles; 7. Hyperthermia tests with various Fe@FePtL10@Pt nanoparticles, having different FePtL10 intermediate shells, dispersed in water based solutions and gels; 8. Functionalization of Fe@FePtL10@Pt, FePtL10@PPy (P2HT) and FePtL10@SiO2 (TiO2) nanopatricles in view of magnetically molecular separation and uptake tests from water based solutions.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.4759, O: 168]