Log In
Sign Up
Romania
Citizenship:
Romania
Ph.D. degree award:
2008
Mr.
Sorin Daniel
MARCONI
Ph.D.
Researcher
-
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Researcher
12
years
Web of Science ResearcherID:
https://publons.com/researcher/1728167/daniel-marconi/
Personal public profile link.
Curriculum Vitae (13/05/2016)
Expertise & keywords
solid state physics
Molecular devices
Nanotechnology
Molecular beam epitaxy
Pulsed laser deposition
Scanning probe microscopy
thin films, material science, nanostructures, reactive sputtering
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Development of a highly sensitive and selective SERS aptasensor for medical diagnosis
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2021-1998
2022
-
2024
Role in this project:
Coordinating institution:
UNIVERSITATEA BABES BOLYAI
Project partners:
UNIVERSITATEA BABES BOLYAI (RO); CENTRUL INTERNATIONAL DE BIODINAMICA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Affiliation:
Project website:
https://sites.google.com/view/nanoaptadia/home
Abstract:
Biomarkers are currently used for detection of diseases and monitoring therapeutic progresses in diagnostics. The accurate measurement of biomarkers in human patient samples is exceedingly important requirement for any analytical method. This project aims to develop an experimental demonstrator designed to provide pertinent solutions to three unmet medical needs in diagnostics: (1) high sensitivity; (2) high specificity and (3) label-free detection of disease biomarkers. Specifically, a novel biosensing nanotechnology will be implemented by coupling a new class of high affinity biorecognition elements called aptamers at the surface of plasmonic nanoplatforms recently developed in our laboratory. While the aptamers attached onto the metallic surface can specifically recognize the target molecules (biomarkers), the signal transduction will be based on ultrasensitive Surface Enhanced Raman Scattering (SERS). SERS has previously demonstrated its analytical performance toward “single-molecule sensitivity” and ability to identify and discern biomolecules by their spectral “Raman fingerprint” signature. By exploiting the complementary expertise of three research centers in SERS spectroscopy, chemistry and surface engineering, and fabrication and characterization of plasmonic nanoplatforms we expect to provide the feasibility of aptamer-modified SERS nanosensor for high sensitivity, high specificity and label-free detection of some relevant disease biomarkers. The as-fabricated “microchip” inserted in a Raman spectrometer to collect the SERS signal from the targeted biomarkers can offer unique characteristics, competitive advantages compared to other detection systems in the market and real potential for technology transfer.
Read more
SERS nanoplatform for neurodegenerative diseases diagnostic using bioinspired 3D hierarchical nanostructures
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente - TE-2021
PN-III-P1-1.1-TE-2021-0753
2022
-
2024
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Affiliation:
Project website:
https://www.itim-cj.ro/PNCDI/nanedissers/
Abstract:
In today’s society, the need for more rapid, sensitive, specific and accurate new diagnosis methods for neurodegenerative disorders is critical due to the aging of the population. The main objective of “NanedisSERS” is to develop a new and improved surface-enhanced Raman scattering SERS-based flexible nanoplatform for the noninvasive detection of neuro-biomarkers at trace level concentrations. We propose a joint use of zinc oxide (ZnO) and silver (Ag) materials to fabricate bioinspired, innovative 3D nanoplatforms using modern fabrication techniques. Nanoimprint Lithography (NIL) will be employed to fabricate periodic bioinspired nanopatterns on flexible and transparent substrates. The innovative 3D hierarchical SERS active substrate will consist in the deposition of ZnO and Ag thin films using Pulsed Laser Deposition (PLD) and Magnetron Sputtering (MS) methods. The originality of the proposal lies in the joint exploitation of top-down (NIL) and bottom-up (PLD, MS) approaches with real time and ultrasensitive SERS detection to maximize the detection sensitivity, specificity and decrease overall cost, (ii) the bioinspired arrangement of high-density hotspots decorated with SERS active ZnO@Ag heterostructures and (iii) direct use as a simple and accessible tool of neurological biomarkers’ SERS detection. The proposed SERS diagnosis platform could have a ground breaking impact and can arise as a viable complementary technological candidate to the traditional diagnostic tools.
Read more
Gold nanourchin (GNU)-based SERS microfluidic immunosensor for the early detection of Alzheimer's Disease (AD) relevant biomarkers
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente - TE-2021
PN-III-P1-1.1-TE-2021-0234
2022
-
2024
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Affiliation:
Project website:
https://sites.google.com/view/aldibisensers/home
Abstract:
This project focuses on the development of a surface-enhanced Raman spectroscopy (SERS)-based microfluidic sensor that makes use of the unique physical properties of gold nanourchins (GNUs) as efficient SERS-amplifiers, induced due to their spiky geometry. The specificity of the system is ensured by the employment of antibodies as molecular recognition moieties, which have the inherent property of binding the target antigen with high affinity. Herein, we aim to detect and quantify Alzheimer’s Disease (AD) specific biomarkers at concentrations that are relevant for early (pre-symptomatic) diagnosis, from biological samples that can be collected non-invasively, such as saliva, urine, or plasma. The miniaturisation of such a detection device through implementation in a microfluidics platform can offer advantages like low sample volume, short reaction time, robustness, reliability, and portability, with the potential for implementation as point-of-care devices.
Read more
Eco-friendly nanocomposites based on bio-PA and bio-fillers for injected auto parts
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2021-0795
2022
-
2024
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Affiliation:
Project website:
https://icechim.ro/project/econano4auto/
Abstract:
The ECONANO4AUTO project offers an innovative and efficient solution for the field of smart specialization - Energy, environment and climate changes, namely reducing the CO2 footprint and accumulations of polymeric waste, by developing of new and innovative technology for obtaining of new polymer bio-nanocomposites based on bio-PA and keratin/ nanoparticle hybrids, lightweight and with improved thermal and mechanical properties. Starting from high-performances bio-PA10,10 and a natural waste (chicken feathers) the project will provide at the end a viable, low cost and eco-friendly solution for effective using of chicken feathers and reducing of impact on environmental pollution. The developed technology will be validated in laboratory conditions to obtain parts by injection moulding. A toxicological study will be carried out regarding the nanomaterials action on the epidermal and pulmonary cells and a methodological guide will be elaborated regarding the prevention of the risks related to the work with nanoparticles. The partnership for this project involves 2 R&D National Institutes, well known in Romania and abroad, competent in the project field and with scientific and technical potential for development and characterization the new technology for obtaining bio-polymer nanocomposites.
Read more
Nanostructured plasmonic platform for dual electrochemical/SERS detection of environmentally persistent pharmaceutical pollutants
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-5473
2020
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU" (RO)
Affiliation:
Project website:
https://www.itim-cj.ro/PNCDI/pharmexer
Abstract:
Pollution caused by pharmaceuticals is an emerging problem with evidence of risks to the environment and, even to human health. This project, titled 'Nanostructured plasmonic platform for dual electrochemical/SERS detection of environmentally persistent pharmaceutical pollutants' (acronym PharmExER) proposes to develop a metallic nanostructured sensing platform that is capable to function simultaneously as a surface enhanced Raman spectroscopy (SERS) substrate and as an electrode for electrochemical (EC) sensing. By joining the two techniques on a single platform several benefits will by achieved: SERS will benefit from the possibility of trapping (capturing) molecular analytes by electrochemical surface processes; EC sensing will benefit from the increased surface area of the nanostructured metallic patterns; a mutual benefit yields from the possibility to provide Raman fingerprinting during the EC analysis, providing valuable information on fundamental molecular processes involved. Both an experimental demonstrator model enabling analysis of liquid samples, and the method for efficiently performing experiments will be provided. The experimental demonstrator will be integrable with current state-of-the-art spectro-electrochemistry equipment, making it a prospective product that could potentially target a broad market. By starting at TRL 2 we aim to achieve the higher technological maturity level TRL 4. We also aim to contribute to increasing the capacity of our institutions to generate laboratory-validated solutions for new products in the field of environmental sensors, stimulating the interest of economical agents with academic or industrial profile or environmental agencies.
Read more
High-throughput nanoscreening platform for SERS monitoring of latest generation antibiotics’ activity on antibiotic-resistant pathogens at single-cell level
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-0910
2020
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
https://sites.google.com/view/antibresissers/
Abstract:
We propose an alternative to traditional diagnosis of infections based on surface-enhanced Raman scattering (SERS) which involves collecting a sample from the patient, which is further put in contact with a silver spot laser induced, resulting in scattering and recording the spectral fingerprint of the pathogen, if present. By comparing the obtained fingerprint with standard spectral fingerprints from existing databases, the pathogens may be identified at strain level within minutes. Obtaining an antibiogram is the final step, which can be assessed in maximum of a couple of hours. This method may enable an effective and targeted infection treatment, and may reduce significantly the mortality rate, especially in infants, given by the increasingly number of aggressive strains.
The proposed nanoscreening platform offers a unique approach that is different from other medical techniques utilized nowadays for the screening of pathogens in routine clinical work. It combines SERS for the ultrasensitive molecular fingerprinting of pathogens with microfluidics for their isolation. Moreover, we intend to comprehensively implement additional computational tools in order to achieve a full understanding of the pathogens’ mechanism of resistance. This issue will be pursued by using optimized, in-house developed statistical model for identification, discrimination and classification of pathogens and quantum chemistry molecular modelling tools. The main advantages of the proposed SERS-based nanoscreening platform are that it is rapid, label free (no use of antigens, receptors, dyes or other specific labels is required), cost-effective, reliable, portable and ultrasensitive.
Once we succeed to tackle the connection between the resistance behavior of antibiotic-resistant pathogens and their spectral fingerprint monitored in real time by using our proposed methodology, we will be able to move forward and to influence point-of-care routines for sepsis.
Read more
The development in oncology of novel radiopharmaceuticals and nuclear techniques for diagnostic imaging and personalized treatment at molecular level
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0769
2018
-
2021
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH (RO); INSTITUTUL DE BIOCHIMIE (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE MEDICO-MILITARA „CANTACUZINO” (RO); UNIVERSITATEA BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE IN DOMENIUL PATOLOGIEI SI STIINTELOR BIOMEDICALE "VICTOR BABES" (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "CAROL DAVILA" (RO); INSTITUTUL CLINIC FUNDENI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
https://www.nipne.ro/proiecte/pn3/9-proiecte.html
Abstract:
The ONCORAD project and the associated technological platform in Radiobiology, is built on the concepts of translational medicine and has as main objective the development of innovative targeted radiopharmaceuticals and nuclear medicine techniques for diagnostic imaging and improved radiotherapy in cancer. ONCORAD is based on the unique expertise of the coordinator (IFIN Horia Hulubei, Magurele) ) in the field of radioisotopes and radiopharmaceuticals, complemented by the exquisite know how of partner institutions in the field of biomedical research (INCD Victor Babes, Cantacuzino National Research Institute and Biochemistry Institute, Bucharest) and clinics (Fundeni Clinical Institute and Colentina Clinical Hospital, Bucharest), along with the expertise of INCD for Isotopic and molecular Techniques, Cluj-Napoca in nanotechnologies/nanomedicine. The multidisciplinary effort is focused in 4 interconnected research projects in the field of oncology and nuclear medicine. Additionally, the ONCORAD project will sustain the development of the partner institutions by supporting new jobs for young researchers and their extensive training, infrastructure development, and transfer of knowhow, technologies and good laboratory practices among partners and towards interested third parties. ONCORAD will build an organizational structure for enhanced interdisciplinary collaboration in the field of radiobiology, in the benefit of research, patients and oncologists. The project is a premise for future participation of the consortium in large-scale projects and in European networks/platforms in the field of nuclear medicine and nanomedicine, enlarge the research services and technological transfer for clinical applications.
Read more
Emerging technologies for the industrial capitalization of 2D structures (graphene and nongraphenic)
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0387
2018
-
2021
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA DIN CRAIOVA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=49
Abstract:
EMERG2Ind is a complex solution that responds to the needs of Romanian research on one side through a institutional management and development mechanism, but at the same time it is a complex interface tool for the Romanian automotive industry as a development engine and integrator for the horizontal and vertical integration of the Romanian economic resources. International expertise is available in an attempt to develop concrete solutions in the country. Emerging technologies are being developed up to TRL4 and TRL5, through complementary harmonization of three strategic subprojects. The complex project approach is regional and institutional with cumulative indicators that fully meet the requirements and seeks to maximize the use of the funding instrument.
Read more
Emerging molecular technologies based on micro and nano-structured systems with biomedical applications
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0010
2018
-
2021
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA "ALEXANDRU IOAN CUZA" IASI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE MEDICO-MILITARA „CANTACUZINO” (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU" (RO); UNIVERSITATEA BABES BOLYAI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://www.itim-cj.ro/PNCDI/tehnobiomed/
Abstract:
The TehnoBioMed project aims to increase the institutional performance of 6 partners with a rich tradition in research, development and innovation (RDI) joined in a consortium with a strong interdisciplinary character designed to develop emerging molecular technologies based on micro- and nanostructured systems and dedicated to biomedical applications.
The project consortium consists of 6 partners distributed in 3 university centers with a tradition in the RDI activity: Cluj-Napoca, Bucharest, Iasi, and consists of 3 national institutes and 3 prestigious universities. The consortium partners are distributed in three different development regions of Romania.
The specific objectives of the project can be synthesized by: i) Manufacturing and testing of surfaces with antimicrobial properties obtained by micro- and nano-fabrication techniques and functionalized with antimicrobial peptides; ii) Development of molecular targeting drug systems by encapsulation in supramolecular structures of the dendrimeric type; iii) Carrying out, calibrating and testing a complex diagnostic equipment based on the principles of coherent optics and dedicated to obtaining high-resolution images in medicine and material science; iv) Development of new technologies for the detection and analysis of molecular biomarkers; v) Development of the technological potential of phycobiliproteins for the production of photosensitive materials with applications in new solar cells and new immunological sensors.
The project aims to develop new or significantly improved products / technologies / services of which we mention the following: Developing a high-resolution OCT imaging equipment with applications in biomedicine and material science; Designing, manufacturing and testing of a nano-ELISA technology; Making new systems with improved antimicrobial activity and increased efficiency against bacterial biofilm formation; Obtaining compounds/materials with impact in the prevention and control of infections.
Read more
Development of a microfluidic portable device for pathogen’s rapid SERS detection
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2016-0983
2017
-
2018
Role in this project:
Project coordinator
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA BABES BOLYAI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://www.itim-cj.ro/pncdi/mifsers/
Abstract:
In this project we aim to develop and validate an experimental demonstrator for the label-free surface-enhanced Raman scattering (SERS) detection of pathogens within less than 15 minutes.
Thus, we propose a demonstrator, comprising a microfluidic flow-cell coupled to a flow system, and a portable/handheld Raman spectrometer for SERS detection of pathogens immobilized in the flow cell. This will lead to a rapid, ready-to-use system of detection that will provide rapid, high sensitivity and culture-free analysis of real biological samples.
We propose a label-free SERS–based alternative approach for detecting pathogens in a practical manner, by developing an experimental demonstrator that is based on the in situ silver NPs preparation in a microfluidic flow-cell and the handheld Raman spectrometer as detection tool. This innovative methodology is sustained by the research background of the candidate (specialized in vibrational spectroscopic techniques, mainly SERS and its analytical chemistry and biomedical applications), the partner's expertise, and the latest generation equipment. Eventually, the team members will be able to validate the developed detection methodology by using the handheld Raman spectrometer on real biological samples, in laboratory conditions.
The objectives of the project are developing the experimental setup, optimizing and validating the SERS detection methodology by using the developed device and finally, validating the experimental demonstrator and apply for a patent registration. As a final step of the development of the detection system, the analysis time will be reduced to less than 15 min.
The pathogens we will test are most common Gram-negative uropathogens, foodborne pathogens, Gram-positive enterococci, skin pathogens, and pathogenic fungi which cause complications in immunosuppressed patients.
Thus, after project implementation the TRL will reach a level of 4 on the TRL scale.
Read more
Optical Nanofabrication in the domain 5 nm - 50 nm
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1374
2014
-
2017
Role in this project:
Coordinating institution:
STOREX TECHNOLOGIES SRL
Project partners:
STOREX TECHNOLOGIES SRL (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); TEHNO ELECTRO MEDICAL COMPANY SRL (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU INGINERIE ELECTRICA ICPE - CA BUCURESTI (RO); REGIA AUTONOMĂ TEHNOLOGII PENTRU ENERGIA NUCLEARĂ - RATEN PITEŞTI SUCURSALA CENTRUL DE INGINERIE TEHNOLOGICĂ OBIECTIVE NUCLEARE BUCUREŞTI MĂGURELE CITON (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://storextech.github.io/nanofab/
Abstract:
The main objective of the Project “Optical Nanofabrication in the domain 50 nm – 5 nm” is to valorize the last results of Quantum Optical Lithography with resolution of 2 nm [1] to 3D optical nanofabrication.
Secondary objectives of NANOFAB Project are the following: i) development of metamaterials (3D photonic crystals) able to improve telecommunications ii) realization of nanochannels and nanoarrays for DNA studies and iii) production of metallic components such as gear for the prototype nanorobots.
Initially, complex 3D structures were produced by stacking multiple 2D layers. The patterns were realized by lithography (optical lithography and Electron Beam Lithography). A new opportunity in 3D fabrication has been started by the development of femtosecond lasers. Materials processing technology by using femtosecond laser irradiation has attracted tremendous interest from the scientific and technological communities. Studies have indicated that diffraction limit creates a major difficulty to obtain 3D structures with dimension smaller than 100 nm. Quantum Optical Lithography broke the diffraction barrier by using new approaches and materials (fluorescent photosensitive glass-ceramics, resist). Fluorescent photosensitive glass-ceramics were successfully tested to produce 3D nanostructures at 2 nm resolution.
The expected results are interesting and the exploitation of this new technique could be economically attractive. A group of novel technologies relating to laser nanomachining using Quantum Optical Lithography will be developed. This advanced materials processing technique opens the door to a new generation of optical devices for telecommunications, nanofluidics and biological sensing.
In present days, optical fiber telecommunications are carried out by infrared lasers. Optical Nanofabrication based on Quantum Optical Lithography with 2 nm resolution is the only technology able to realize at low price and high quality optical components dedicated for optical fiber telecommunications with visible light. This shift of wavelength from infrared to visible light will improve in a major way the performances of telecommunication systems.
US government agencies granted funds to universities and research institutes exceeding billion towards research developing nanodevices for medicine.
Large corporations like Alcatel-Lucent, NEC, Corning, Nippon Telegraph and Telephone invest in optical fiber telecommunications R&D and General Electric, Hewlett-Packard, Northrop Grumman work in the development of medical nanorobots. All these companies could be interested in the application of Optical Nanofabrication in production.
The 1961 classic science-fiction movie Fantastic Voyage movie was about a team of scientists who are shrunk down and sent in a miniature submarine inside the body to repair a blood clot in an ailing colleague’s brain.
The Project NANOFAB will start to convert this dream into reality by producing first metallic components needed for a prototype medical nanorobot.
[1] Pavel E, Jinga S, Andronescu E, Vasile B S, Kada G,
Sasahara A, Tosa N, Matei A,Dinescu M, Dinescu A and
Vasile O R 2013 2nm Quantum Optical Lithography ,
Optics Communications 291 259–263
Read more
Ion sensing and separation through modified cyclic peptides, cyclodextrins and protein pores
Call name:
Complex Exploratory Research Projects - PCCE-2011 call
PN-II-ID-PCCE-2011-2-0027
2012
-
2016
Role in this project:
Key expert
Coordinating institution:
“Alexandru Ioan Cuza” University
Project partners:
“Alexandru Ioan Cuza” University (RO); National Research and Development Institute of Isotopic and Molecular Technologies (RO); “Babes-Bolyai” University (RO); “Horia Hulubei” National Institute for Physics and Nuclear Engineering (RO); “Carol Davila” University of Medicine and Pharmacy (RO)
Affiliation:
National Research and Development Institute of Isotopic and Molecular Technologies (RO)
Project website:
http://science.research.uaic.ro/biosens/
Abstract:
Development of nanostructures capable of detecting and separating individual molecules and ions has become an important field of research. Particularly, protein-based nanostructures are attractive due to their ability for tunable molecular recognition and ease of chemical modification, which are extremely important factors on various applications. In this project, self-assembly functionalization will be approached, aimed at providing an efficient design for molecular recognition, ion sensing and separation, through new host-guest chemical methodologies, bio-nanofabrication and physicochemical manipulations methods. New crown ether type macrocycles, functionalized cyclodextrins and cyclic peptides will be engineered to work as specific molecular adaptors for the -hemolysin protein, giving rise to hybrid molecular superstructures possessing ion sensing and selectivity properties. The size and functionality of the macrocycles are targeted to ensure the anchorage in the pores and the selectivity of specific host-guest complexation processes. A surface detector array device suitable for use with a biosensor is envisioned, through ink printing nanotechnologies. The device architecture will be formed of a substrate having a surface defining a plurality of distinct bilayer-compatible surface regions separated by one or more bilayer barrier regions. Custom designed nanoscale bilayers containing selected receptors through cyclodextrins derivatives and macrocyclic peptides, self-assembled on different micro-nano arrays surfaces (polymers, Au or Si) will be fabricated. Further engineering of such functionalized nanomaterials based on molecular recognition and host-guest methodologies, in conjunction with flexible and mechanically robust enough substrate platforms, have the great potential for applications such as separation of nanoparticles, sensors, drug delivery, removal of heavy metals from aqueous solutions and chiral separation.
Read more
The study of metal-insulator transition of the oxide superconductor compounds by controlling the content of oxygen and atomic substitutions
Call name:
Project TD CNCSIS, Contract No. 20GR/6.06.2007 Theme No.4, COD C
2007
-
2008
Role in this project:
Project coordinator
Coordinating institution:
UNIVERSITATEA BABES BOLYAI
Project partners:
UNIVERSITATEA BABES BOLYAI (RO)
Affiliation:
UNIVERSITATEA BABES BOLYAI (RO)
Project website:
Abstract:
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
Download (25.5 kb) 13/05/2016
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.4461, O: 306]