Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
Silviu
Mihaila
-
n/a
Personal public profile link.
Expertise & keywords
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Applications of substrate integrated waveguide structures for measuring the permittivity of dielectric materials in microwave domain
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-1198
2015
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.imt.ro/siwcell/
Abstract:
The main target of this project consists in the development of a novel technique based on SIW chokes for measurement of dielectric samples (solid or liquid) placed inside of a SIW cell. The bandwidth target covers 5 - 6 GHz band for a single cell, expandable to 4 - 7 GHz based on minor changes of the system. The efficiency of these chokes will be investigated. An original scalar measuring system which allows simultaneous extraction of the reflection and transmission coefficient amplitude, associated to the manufactured cell will be realized. The determination of two circuit parameters allow a better correlation of the experimental results, with a rapid effect on the high precision of the computing values of both real and imaginary parts of the permittivity. A typical 7.5% accuracy is expected for the measuring system. Electromagnetic models will be employed for the development of SIW cells having high Q factor. Also, a mathematical model for post-processing of the experimental data will be implemented in order to determine with high accuracy the permittivity of the measured samples.
Read more
Compact spectrometer in infrared
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1988
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); OPTOELECTRONICA - 2001 S.A. (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU INGINERIE ELECTRICA ICPE - CA BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.imt.ro/cospir/
Abstract:
The proposed project aims the validation of new “proof of concept” for a compact spectrometer working in middle and long infrared. This spectrometer will retain the advantages of the current gas sensor optimized for the detection of one or a few gas species as the low cost, small volume but in the same time will offer the flexibility of the bulky, costly spectrometers. The previous research on such compact spectrometers considered dispersive devices based on MEMS – micro-electro-mechanical systems technology with movable small parts actuated electrostatically or thermally and nondispersive devices based on filters at fixed wavelengths. The nondispersive spectrometer employs either large movable parts as wheel filter or the beam splitting before entering the filter arrray. This project has as the main objective the design and fabrication of a compact spectrometer based on an array of filters without any movable parts which will eliminate the need for power splitting by using a configuration based on a sequential approach (all radiation enters the first filter and the rest of the radiation not transmitted is reflected and further used to enter the second filter, etc).
In order to obtain a spectrometer with good working characteristics it is necessary to design and fabricate high quality components both active (infrared thermal emitters and detectors) and passive (filters and Fresnel lenses). Since the research field on the infrared emitters and detectors is still open, the secondary objective of this project is to obtain original results regarding both infrared emitters and sources which will be published in ISI ranked journals and presented at conferences.
The consortium is made up from IMT-Bucharest as project coordinator, Optoelectronica-2001 as SME, and two other research organizations, ICPE-CA and INFLPR. There are four work packages in this project, the first ones deal with the design and fabrication of the active and passive components for spectrometer and the last two work packages will include the studies on the design and fabrication of the spectrometer.
The task of the design and fabrication of the active and passive components will be the assigned to IMT due to the high expertise of the research staff and also due to the availability of the equipments suitable for microfabrication technologies. There are also available dedicated software packages for electro-thermal-mechanical simulations for active components and optical simulations for passive components. The sensitive layers for the pyroelectric detectors will be deposited by ICPE-CA with RF sputtering or sol-gel method and INFLPR with Pulsed Laser Deposition. The fabrication of high quality infrared thermal detectors is critical for the successful end of the project, that is why the option to consider more deposition method for various sensitive layers has been considered. The characterization of the components will be made by Optoelectronica due the high expertise and equipments available ((sources, camera, FTIR spectrometer working in infrared)
The task of the spectrometer fabrication is assigned to Optoelectronica due to the team members experience in fabrication of optical devices and equipments integrated with control and command circuits. The testing procedure for the spectrometer validation and calibration will be performed by Optoelectronica with IMT.
The intellectual properties rights will be protected by filling patents and the results obtained in this project may be used by SME partner of the consortium – Optoelectronica for development into an product, or as a base of development into a product in cooperation with another company.
Read more
Multiplexed platform for HPV genotyping – MultiplexGen
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1434
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); GENETIC LAB S.R.L. (RO); UNIVERSITATEA BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.imt.ro/multiplexgen/index.php
Abstract:
MultiplexGen project addresses a current problem in medical diagnosis, detection in an accurate and specific way of Human papillomavirus (HPV) and sets out to explore specific solutions from micro- nanotechnology to overcome the limitations of the conventional tests, which are not quantitative and exclude multiplexing. The aim of the project is to develop a high sensitivity multiplexed platform which consists of different functional levels, and as a consequence is generic named “multilevel system”. It is based on hybrid organic-inorganic / bio-nonbiological assemblies able to enhance diagnostic capabilities by exploiting the bridge between bio-systems and micro-nanotechnologies, thus overcoming many of the limitations of the existing methods for Human papillomavirus (HPV) detection and genotyping.
This proposal has evolve as a result of numerous discussions initiated by researchers from the clinical laboratory - SME – GeneticLab with their colleagues from Laboratory of Nanobiotechnology - IMT (LN-IMT) about various specific issues they encountered in their activity related to HPV genotyping by capillary electrophoresis kit, which are identified as primary technical and scientific barriers that will be lifted by carrying out the present project. The long time collaboration encouraged them to believe that IMT will find a technological answer to the problem posed by the classical diagnosis method, and furthermore, Centre of Applied and Organic Chemistry - UB (CAOC) will provide a theoretical understanding of the processes and phenomena taking place in HPV genotyping.
The issues supposed to be solved related to the mentioned thematic area, which represents the secondary objectives of the project, are encompassing the fundamental and technological knowledge and are parts of our functional model demonstration, as following: (i) to obtain a microarray based technology for accurate HPV genotyping; (ii) to improve the up to now reported results in terms of sensitivity / selectivity by connecting the biochip to a microfluidic system; (iii) to indicate the optimum design for biochip to allow parallel detection and in this way confirmation of results; (iv) to propose a heterogeneous technology for integration and 3D packaging and correpondingly a functional hybrid assembly of all these modules for a further disposable system developing.
Therefore, an extensive investigation and optimization of the benefits that our knowledge in genetics, microfluidic technology, microarray technology, surface biofunctionalization, as well as opto-electrical read-out signal analyses are able to bring a valuable tool to a medical diagnostic laboratory, a chip class of devices, with important specific HPV detection / genotyping application. For example, combining the fields of microfluidics and DNA microarrays, the advantages of both directions can be exploited simultaneously, mediated by valuable new knowledge about biointeractions and biohybrid assembling.
Besides the envisaged final outcome of this project, the functional model of hybrid multilevel system for HPV genotyping, the modules and even more, each specific technology improvement are of high value by themselves each of them being independently used thenceforth. State-of-the-art scientific results in all of the disciplines involved will be the direct project outcomes, which will be proven by the publications on microfluidics, on-chip sample preparation, and on clinical comparison of HPV detection technologies in international journals and at international conferences.
Read more
Temperature sensor based on GHz operating AlN/Si SAW structures
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0677
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); ROM-QUARTZ S.A. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.imt.ro/setsal
Abstract:
The main objective of this project consists in the manufacturing of the first temperature sensor based on a SAW type device on AlN/Si. The sensor is based on the variation of the SAW resonance frequency vs. temperature. The sensor will be characterized ”on wafer” in the 25-150 oC temperature range. The sensor structures mounted on a special ceramic carrier, provided with SMA connectors and cables, will be characterized in the 5-500 K temperature range inside a cryostat. We aim to obtain a sensitivity >75 ppm/oC (on-wafer measurements) and 60 ppm/ oC for measurements with connectors and cables, in the 23-150 oC temperature range.
The project corresponds to the world wide effort to obtain acoustic devices operating in the gigahertz frequency range, using wide band gap semiconductors (AlN, GaN). These materials have very good piezoelectric properties. High quality GaN and AlN layers grown or deposited on Sapphire SiC or Si substrate permits to use in the fabrication protocol nanolithography, micromachining techniques and monolithic integration. The advantage of using AlN for the SAW structure consist in the possibility to obtain a higher resonance frequency and a higher sensitivity for the sensor. The project has few objectives beyond the state of the art.
The main element will be a SAW structure on AlN/Si with the resonance frequency in the 6-9 GHz range. The highest resonance frequency obtained up to now for SAW structures on AlN/Si is 5.1 GHz and was reported by the IMT and INCD-FM groups, partners in this project, using an IDT structure with digits and interdigit spacing 300 nm wide. This project requires interdigitated transducers having the digit/interdigit spacing 80-150 nm wide, a challenge due to the major difficulties of the nanolithographyic process on materials like AlN or GaN. Up to now, the narrowest lines on AlN have been reported on an AlN/Diamond based SAW structure in 2012 (200 nm).
For the proposed sensor a „single resonator” structure will be developed. Compared with classical structures based on face-to-face resonators and delay lines, the single resonator structure offers few advantages: higher quality factor, lower losses and mainly, higher values for the sensitivity, as it was recently proved by IMT for GaN.
A two steps, low temperature, deposition process will be developed, for the synthesis of thin AlN films. The goal is to lower the FWHM of rocking curve at 1.5° for the AlN films deposited on Si.
There is a potential advantage of monolithic integration of the SAW based AlN temperature sensor in a CMOS ICs. AlN technology is CMOS compatible, due to its low deposition temperature. In such circuits fabrication protocols contain nanolithographic processes, therefore these processes for the sensor will not add significant costs.
The project consortium consists in four teams with excellent expertise and complementarity in the project topics. The IMT team has many contributions in the state of the art for acoustic devices on GaN and AlN, in nanolithography and microwave characterization. INCD-FM has an excellent expertise in high quality AlN films deposition. UPB has excellence expertise in design and modelling of high frequency devices and circuits. ROMQUARZ is the only Romanian enterprise with an authentiq experience in SAW type devices manufacturing on classical piezoelectric materials.They have been involved in SAW devices manufacturing on non-semiconductor materials (quartz, lithium niobate, etc) in the last 20 years.
Read more
RFID device for food traceability
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1268
2014
-
2017
Role in this project:
Coordinating institution:
UNIVERSITATEA BUCURESTI
Project partners:
UNIVERSITATEA BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); OPTOELECTRONICA - 2001 S.A. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.3nanosae.org/p/foodtrack/
Abstract:
“RFID device for food traceability (Food track)” aims specifically to develop a self-sustainable RFID device, equipped with a sensor, which allows, not only the traceability of a certain food package, but also the level of freshness of its content. The need for active intelligent packaging equipped with nano-systems that can monitor the conditions of the food during transportation and storage has led the scientific community to the development of a novel based on the electronics on plastic. Electronic circuits supported on a cheap, flexible polymeric support that can be miniaturized up to micro and nano level promise to assure a fast and inexpensive quality control available for everyone. Radio frequency identification tags (RFID) are the most important development field today, based on the implementation of conductive polymers onto a flexible plastic support; they are similar to bar codes and have been used in food industry traceability, inventory management and security. But RFID systems can carry much more complex information, like temperature, relative humidity, gases and electroactive species, when equipped with a specific sensor and have the ability to transmit information up to 50 m. Thanks to their low-level complexity and cost, RFID have the potential to become the leading market in food control, especially if they integrate chemical sensor. This RFID-sensor assembly is the central component of the intelligent packaging system which, in contrast to active packaging does not influence properties of the food products, but collects the information about its state and transmits it to retailers, manufacturer, food authorities or customer.
Wireless sensor and sensor networks are the state-of-the-art in detection technologies; their use varies from homeland security to environmental protection. The key requirements for a sensor refer to sensitivity (the minimal level of analyte to detect), selectivity (exclusion of “false alarms” and the identification of a specific analyte) and response time (high-speed electronics are preferred since they provide a real-time analysis). The challenges which have to be overcome refer to finding a single technology that can unify the multitude of fabrication methods for different kind of sensitive layers, cheap materials, moderate costs, easy to use and long-time batteries.
The proposed instrument will be comprised of a self-sustainable source, a micro-RFID device and an electrochemical sensor with four sensitive functions, modulated for each type of food. The main component of the instrument is the sensor-RFID assembly. The sensitive layer of the sensor will be design to detect a broad range of properties, characteristic for the qualitative control of food: temperature, relative humidity, pH, number of refreezing cycles, volatile organic compounds and biogenic amines. The micro-RFID device will store and transmit the information collected from the sensor. The system will be powered by two metallic electrodes, chosen from the appropriate position in the table of chemical reactivity; the electrolyte solution will be provided by the food itself (internal, organic juices that will diffuse through a permissive membrane and connect the two electrodes).
The novelty of this project is the incorporation of an interdigitized sensor, laser-printed on a cheap, flexible polymer, combined with a micro-RFID device and an incorporated self-sustainable battery for use if food industry and quality control.
Read more
Antireflection coatings for ultra-short high power lasers
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1870
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); PRO OPTICA SA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://ppam.inflpr.ro/arcolas.htm
Abstract:
The ARCOLAS project addresses an important topic fitted with specific thematic area of New Photonic Materials, namely design and testing as demonstrator of durable advanced antireflection (AR) coatings for plasma mirrors working in ultra-short TW/PW lasers systems.
It is intimate related to the existing high level technological ultra-short pulses lasers network facility in NILPRP (CO) and, with the aim and goal to upscale the obtained optical components for the unique ELI-NP facility to be built in the Magurele research area and where NILPRP is involved as partner.
The project answers to the demand for optical components used to ultra-short high power lasers systems because the number of these facilities is increasing and there are only two suppliers in the world.
The project will be developed in precise steps, following the concept in its theoretical and practical aspects.
First, the composition/combination of the dielectric materials with different refractive indices to be used as thin film(s) and/or heterostructures with antireflection properties will be studied.
The different layers will be obtained by pulsed laser deposition (PLD) and PLD assisted by a Radio-Frequency discharge (RF-PLD).
The experimental parameters for obtaining of each layer and of layers combination will be established after their careful characterization by specific techniques as AFM, XRD, spectroellipsometry, SIMS, SEM, HR-TEM, with high performance equipments belonging to the involved partners.
Then, optical components – demonstrators with controlled antireflection characteristics will be obtained based on dielectric layers with optimized properties and deposition architecture with the objective to be compatible with generation of plasma mirrors capable to withstand high energies ultra-short laser pulses.
Simultaneously, computer simulation studies regarding the phenomena that rise when a high energy ultra-short laser beam hits a material will be performed using Particle in Cell-Finite Difference Time Domain method.
Of a paramount importance in the project will be the components-demonstrator for plasma mirror testing in ultra-short high intensity laser field, in relativistic regime (intensities of 1018 W/cm2 - 1020 W/cm2). This will be made at INFLPR, where there is already established a complete and unique power-chain laser system: GIWALAS – GW, TEWALAS – TW and CETAL – 1 PW. The possibility of the direct access to these facilities will allow a rapid feedback regarding the AR coating behavior in the plasma mirror regime.
An important aspect is related to the prospective to use the demonstrator for the future 10 PW ELI-NP facility, where ultra-relativistic regime (1023 - 1024 W/cm2) are expected to be generated.
The industrial partner has the ability to design and produce the supports for optical components capable of withstanding high power ultra-short laser pulses.
The generated results will be the subject of patents first, as the topic is of vanguard, and of publications in high impact journal.
Read more
Identification of new modulators of calcium-regulated processes using genomic and chemogenomic screens in yeast
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0291
2014
-
2017
Role in this project:
Coordinating institution:
UNIVERSITATEA BUCURESTI
Project partners:
UNIVERSITATEA BUCURESTI (RO); INSTITUTUL DE BIOCHIMIE (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); APEL LASER S.R.L. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.calchemgen.ro/
Abstract:
Calcium ions are used by virtually all eukaryotic cells to signal information about the environment and the physiological state of the cell, or to regulate various cellular processes such as initiation of gene expression, alterations in cell shape, membrane fusion, or programmed cell death. Excessive or unregulated levels of calcium induce a variety of drastic defects, such as uncontrolled cell proliferation, aberrant cell morphology, or cell death, leading to disruption of normal metabolism and initiation of various diseases. The versatility of calcium-mediated regulation of key physiological processes requires extensive research to identify the interplay between calcium signaling, mechanisms of diseases and discovery of new drugs.
The aim of this project is to utilize Saccharomyces cerevisiae cells to unravel new insights into the calcium-regulated cell mechanisms and to investigate the applicability of in house newly-synthesized chemicals as novel therapeutic and imaging agents, selected through interactions with the calcium-dependent pathway components. The budding yeast Saccharomyces cerevisiae is a unicellular eukaryotic organism extensively used for the study of conserved processes and for getting information that can be further extrapolated to complex organisms like humans. The current proposal was initiated by highly-promising preliminary results obtained in the laboratories of the coordinating group. These results are based on novel and spectacular cell modifications which mimic aberrations in fundamental processes such as cell shape, cell polarity, and cell proliferation, representing the center of a complex network of research which will be established by the project.
The project will imply systemic investigations such as genomic profilings paralleled by chemo-genomic screens designed to identify new interactions between small molecules and calcium-related biologic processes. The proposed work will provide an unprecedented coverage on structure-function information, facilitating the analysis of synergistic and antagonistic interactions between molecular components of calcium-related metabolism. The project is multidisciplinary, involving a plethora of aspects related to cell and molecular biology, genetics, chemical synthesis and analysis, high-throughput screening, bioinformatics and imaging.
This project will be carried out by a consortium of four partner groups with relevant research and innovation expertise: University of Bucharest (as coordinating organization, CO), Institute of Biochemistry of the Romanian Academy (Partner P1), National Institute of Research and Development for Microtechnology (Partner P2), and a small enterprise, Apel Laser (Partner P3). The consortium was established based on the state-of-the-art infrastructure already existent in the implementing institutions and on the strong complementarities between the research and market expertise of the partner groups.
Read more
Array structures for prevention, individualized diagnosis and treatment in cancers with high risk of incidence and mortality
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 1
PN-II-PT-PCCA-2011-3.1-0803
2012
-
2016
Role in this project:
Coordinating institution:
INSTITUTUL ONCOLOGIC PROF.DR.ALEXANDRU TRESTIOREANU BUCURESTI
Project partners:
INSTITUTUL ONCOLOGIC PROF.DR.ALEXANDRU TRESTIOREANU BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA DE STIINTE AGRONOMICE SI MEDICINA VETERINARA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.iob.ro/proiectepniv.html
Abstract:
Cancer is a worldwide health problem and represents a major public health challenge as it is responsible for 25% of all deaths, being the second most common cause of death after cardio-vascular diseases. In considerations of these peculiarities and of the socio-economic impact of the expected rise of cancer, it appears of priority importance to address the prevention, diagnosis and therapy of this disease more effectively. One of the main directions currently pursued for increasing the proportion of positive responses in the treatment of cancer is the attempt to individualize treatment. Investigation of gene expression profiling is a relatively new methodology for characterization of cancer at the molecular level which tends to be a very useful tool because of its potential to improve clinical management of disease. Very surprising in a way, if the knowledge on molecular aspects of human cancer strongly developed in the last 20 – 30 years, much less data exist in respect to animal cancers, yet this one tends to become an important problem, especially for pets.
The main objectives of the project are designing, fabrication, tests and validation of array structures that could be used to details molecular / genetic particularities of two major forms of cancer: breast cancer, and colon cancer, in order to develop new tools for cancer prevention, and for an individualized ways of diagnosis, treatment and prognostic, both in humans and animals. Interest genes will be RAS, for breast cancer (humans and animals) and colon cancer (humans), and BRCA, for breast cancer, in humans and animals and for cancer prevention. Other expected achievements will be: contribution to existing data on molecular characteristics of cancer; comparative studies between humans and animals referring to cancer genes expression; translation of the results in human and animal clinics; identification of risk groups for breast cancer.
Read more
Advanced Tools and Methodologies for the Multiphysics Modelling and Simulation of RF MEMS Switches
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 1
PN-II-PT-PCCA-2011-3.1-0842
2012
-
2016
Role in this project:
Coordinating institution:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Project partners:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://mems.lmn.pub.ro
Abstract:
The topic is related to the 2012 work programme for ICT of the European Commission which emphasizes the need for more integration on functionalities on chips, requiring new software development technologies and parallelisation tools. The main goal is the development of knowledge in the RF-MEMS domain by fundamental and applicative research finalized with a new modelling methodology validated by experiments, aiming to efficiently couple electromagnetic, mechanical and fluid flow phenomena for the design of RF-MEMS switches. Models of manageable size for a set of benchmarks will be manufactured and characterized. The models will account for the dependence on relevant design or operating parameters and their behaviour will be experimentally validated.
Depending on the complexity of the structures and on the target applications certain steps in the fabrication process can suffer modifications (e.g. deposition of a Benzocyclobutene (BCB) layer on the Silicon substrate, BCB representing an important determinant of package reliability), which could represent a novelty for the technological process. The target is to obtain a functional switch that can be further integrated. The structure of the switch beam must be chosen so as to produce the lowest possible insertion loss (less than -1 dB), the highest possible isolation (more than 20 dB at 20GHz), lowest possible actuation voltage (25 - 30 V) that operates up to 60 GHz. The project aims to demonstrate potential benefits of using supercomputing in the design of RF-MEMS devices, improve design capabilities for RF-MEMS MMIC technology in Romania and achieve an efficient transfer of knowledge in both directions between a research institute which is more industry oriented (IMT) and a university team specialized in high frequency modelling and high performance computing (UPB).
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.3814, O: 224]