Log In
Sign Up
Romania
Citizenship:
Romania
Ph.D. degree award:
2009
RALUCA
IANCHIS
Senior Researcher
-
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Researcher | Scientific reviewer | Manager
19
years
Web of Science ResearcherID:
C-4247-2012
Personal public profile link.
Curriculum Vitae (19/07/2023)
Expertise & keywords
Polymers
Nancomposites
Hydrogels
3D printing
2D materials
Polymer
Clay
Silica
Nanomaterials
Bionanomaterials
Nanocomposites
Hydrogels
Nanomaterials
Bionanomaterials
Clays
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Design of new nanocellulose-based gas-carrier systems
Call name:
P 4 - Proiecte de cercetare exploratorie - PCE-2021
PN-III-P4-PCE-2021-0435
2022
-
2024
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Project website:
https://icechim.ro/celgas-en/
Abstract:
Severe oxygen deprivation can cause significant problems in chronic wounds, during organ preservation and implantation, or in cases of trauma, hemorrhagic shock, or viral pneumonia. Oxygen prevents wound infection, increases cell viability after implantation and could be an effective treatment in viral pneumonia. Currently, there is no viable solution to deliver oxygen to the grafts during the healing period and to administrate a large volume of oxygen to patients who suffered profound oxygen deprivation. The scope of the CELGAS project is to develop innovative oxygen-carrying systems capable of supplying oxygen in a controlled manner to injured tissue/ implants or intravenously. The innovative oxygen-carrying systems will ensure controlled release of oxygen for long periods of time, will have a high stability, biodegradability, will not be cytotoxic and will have a nanometric size, essential for intravenous administration to avoid vascular obstruction. In CELGAS, the problem will be addressed using nanocellulose and nanocellulose/biopolymer to encapsulate oxygen-generating species or to obtain oxygen-containing nanobubbles. The biopolymers to be used are selected from poly (3-hydroxybutyrate), medium chain length polyhydroxyalkanoates and polylactic acid. The design of the new systems will be based on improved methods and an efficient characterization that will allow the achievement of the objectives.
Read more
INNOVATIVE FULLERENOL - HYDROGELS BASED NANOMATERIALS FOR HEALTH DIAGNOSTIC AND CARE APPLICATIONS
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET - COFUND
COFUND-M-ERANET-3-FULSENS-GEL
2022
-
2024
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); CHIMGRUP S.R.L. (RO); Ordu University (TR); Metrohm Dropsens, S.L. (ES)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
https://www.fulsens-gel.ro/
Abstract:
The project aims to develop an innovative nanomaterial with tunable network structures and improved electrochemical/ mechanical/ optical properties, with active surface for sensing applications. The innovative objectives aims to develop: a) new fullerenol(FL)-Hydrogel nanomaterials with better functionality and opto-electrochemical performances; b) (bio)sensitive FL-Hydrogels with higher stability, selectivity and sensitivity; c) flexible, wearable FL-Hydrogels multiplex patches for rapid and efficient health status screening.
Read more
BIOGENIC AMINES DETECTION IN FOOD BASED ON AN INNOVATIVE OPTO-ELECTROSENSITIVE PLATFORM
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2021-1942
2022
-
2024
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); EPI-SISTEM S.R.L. (RO)
Affiliation:
Project website:
https://ami-food.ro
Abstract:
The AMI-FOOD project aims to develop cost-effective and robust miniaturized opto-electrosensitive platforms based on an innovative fullerenol (FL) nanomaterial, with enhanced electrochemical, optical and mechanical properties, for specific and sensitive determination of biogenic amines (BAs) in food. The specific objectives of the project are: To develop a novel FL nanomaterial with tailored structure and enhanced functionality, electrochemical and optical properties; To develop bioselective layers based on FL and specific aptamers, with higher stability, selectivity and sensitivity for histamine and histidine determination; To develop miniaturized opto-electrosensitive bioanalytical tools for rapid and efficient screening of BAs in food. The integrated opto-electrosensitive platforms equipped with novel nanostructured FL material and specific aptamers will show higher sensitivity, specificity and stability comparing to existing commercial ones, responding to the urgent need of a tool for food quality monitoring and controlling of food spoilage/degradation in real time. The originality of this project consists in the design of new versatile (apta)sensors based on the synergistic combination of FL and luminescent based nanomaterials with specific aptamers. The outcomes of AMI-FOOD project are: (i) Innovative functionalized FL nanomaterials; (ii) highly sensitive and selective biosensing materials based on FL and aptamers; (iii) Prototype of opto-electrosensitive platforms based on FL and aptamers for BAs determination in food (TRL4) and (iv) Optimized method for BAs detection in food by using the developed FL-aptamer based bioanalytical tools. This project will have a high socio-economic impact on the safety food and health quality, contributing to reducing and eliminating the contaminated food from the market.
Read more
Synthetic nanogel antibodies molecularly imprinted with the Spike S1 protein
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente - TE-2021
PN-III-P1-1.1-TE-2021-1239
2022
-
2024
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Project website:
https://icechim.ro/project/antispike-ro
Abstract:
SARS-CoV-2 is a new coronavirus type and it is responsible for causing COVID 2019 in humans, with very high contagion rate all over the world. The viral entry of SARS-CoV-2 is conferred by the presence of Spike S1 protein on the surface that can direct attachment and enter the plasma membrane of the human cell. The Spike protein through its location is a significant therapeutic target, and targetable using antibodies. Despite recent technological developments, effective and safe therapies are currently not available for treating the infected victims. Thereby, the general objective of the project targets the synthesis of synthetic nanogel antibodies molecularly imprinted with Spike S1 (MIP-SNAs) for recognizing and retaining coronavirus-originated Spike S1 proteins. In this respect, the MIP-SNAs are able to recognize and bond to the Spike S1 proteins, acting as nanogel caps, and thus inhibiting the activity of SARS-CoV-2 antigen to penetrate the human cells. Hence, ANTISPIKE holds significant influence upon the scientific community by new concepts and methodologies for ligand-free delivery systems as MIP-SNAs (short-term impact: scientific ISI papers and communications, and national patent claim) and by opening new research directions associated with the side-benefits of the research (like new immuno-therapies) as long term impact. Implementation of this project will also bring specific scientific, economic and social benefits at the national and international level.
Read more
BIO-BASED NANOCOMPOSITES FROM EPOXY - CELULLOSE WITH BALANCED THERMO-MECHANICAL PROPERTIES
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-5002
2020
-
2022
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Affiliation:
Project website:
https://icechim.ro/project/epocel/
Abstract:
Epoxy resins are being used in many key applications of the automotive manufacturing industry due to their properties such as high thermal stability, mechanical strength, moisture resistivity and adhesion. Although these materials have a high performance in electronics their end-of-life disposal raised tremendous global environmental concerns. Thus, designing novel biomaterials able to overcome these disadvantages have become an important goal for the scientific community.
The proposed project aims to develop new nanocomposites, based on renewable and inexpensive biological sources, with thermo-mechanical balanced properties for applications in electronics (EPOCEL). The goal of this project will be achieved through the use of renewable resources like vegetable oils and different nanocellulose fillers to obtain the epoxy systems. The EPOCEL nanobiocomposite materials will exhibit a tailored interface design which will assure performances comparable to those of petroleum-based but at a lower price. The project approach is based on the association of materials produced from regionally low cost agricultural feedstocks which will be employed for the development of novel materials with high - added value. Various epoxy system components and different agents for nanocellulose functionalization will be screened for achieving the desired thermal and mechanical performances. Nanocellulose will have a significant role in providing biodegradability besides controlled stiffness.
The assessment of the EPOCEL model for electronics will be made after detailed analysis of physico-chemical, mechanical and thermal properties.
Read more
Advanced material based on push-pull extended π-conjugated azo-chromophores in functional matrices with enhanced NLO properties
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-3009
2020
-
2022
Role in this project:
Coordinating institution:
UNIVERSITATEA BUCURESTI
Project partners:
UNIVERSITATEA BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
https://unibuc.ro/cercetare/promovarea-rezultatelor-cercetarii/proiecte-de-cercetare/proiecte-cu-finantare-nationala/smart-nlo/?lang=en
Abstract:
Scope of the project SMART-NLO is to obtain, optimize and validate the technology of fabrication and the new product based on novel extended azo chromophores in organo-modified silica films, possesing superior NLO properties at TRL4, developed starting from the preliminary results related to other types of chromophores with nonlinear optical (NLO) properties, filmogenic modified silica films and nanocomposite clay-silica materials obtained at TRL2 already achieved by the team’s publications and the existing laboratory techniques. The method of fabrication of novel material consists in encapsulation of the novel chromophores with extended structures in a silica film rational designed to ensure enhanced nonlinear optical properties. Methods of preparation and composition of the silica filmogenic matrix will be adjust to render tunable and efficient advanced materials with suitable arrangement of chromophore molecules and improved stability, for the fabrication of hybrid materials with superior NLO properties. The methods of film formation are chemicals ones, selected to be energy saving and eco-friendly.
Read more
New Intelligent Anti-Corrosion Coatings for Active Protection of Metallic Surfaces, Enhanced with Stimuli - Responsive Mesoporous Silica Nanocontainers Loaded with Organic Inhibitors
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-2053
2020
-
2022
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
https://www.icechim-pd.ro/en/syst_heter/sisteme_heterogene_corrapel_en.html
Abstract:
The strategic objective of the project respond to the need to accomplish the estimated results of the RESEARCH PROJECTS FOR YOUNG INDEPENDENT TEAMS - PN-III-DCD-RU-TE-2019-2, entitled: „New Intelligent Anti-Corrosion Coatings for Active Protection of Metallic Surfaces, Enhanced with Stimuli - Responsive Mesoporous Silica Nanocontainers Loaded with Organic Inhibitors” are: to develop ability of the young researchers to lead teams and manage research projects and to increase their capacity to implement their own research program. Thus, the proposal aims to create an additional opportunity to strengthen a young research team and an independent research program for it, providing the financial and logistic support necessary for 2 young researchers, 2 postdoc students; 3 PhD students and 1 master’s student to carry out their own research activities and to enable them to achieve international high-level of scientific research. The scientific objective of the project consists in preparation of smart mesoporous silica nanocontainers capable of stimuli-responsive release of the encapsulated corrosion inhibitors (CIs). They will be used as key components for obtaining superhydrophobic silica hybrid coatings with enhanced anticorrosion active protection for metallic surfaces. Optimization of mesoporous silica nanoparticles as pH-triggered opening nanocontainers, Design and preparation of of superhydrophobic film forming silica matrices by a simple sol-gel route in the presence of different nanofillers with oxigen barrier and anticorrosion properties and Optimization of the anticorrosion coatings with integrated nanocontainers will be analyzed in terms of the efficiency of the corrosion resistance of the metal surfaces they cover.
Read more
INNOVATIVE 3D PRINTED NANOCOMPOSITE CONSTRUCTIONS OBTAINED FROM MARINE RESOURCES (ALGINATE, SALECAN) AND NATURAL CLAY WITH SPECIFIC APPLICATIONS IN BONE REGENERATION - 3D_ALSAC
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-4216
2020
-
2022
Role in this project:
Project coordinator
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); GENETIC LAB S.R.L. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
https://www.icechim-pd.ro/en/syst_heter/sisteme_heterogene_3dalsac_en.html
Abstract:
The scope of 3D_ALSAC project is to develop and test demonstrative models for a new product and its associated technology, namely an efficient and improved printing formulation based on an innovative biomaterial, followed by the construction of a multifunctional 3D implant designed for bone tissue regeneration. Based on a solid foundation built from the theoretical and experimental results previously obtained by the partners of the Consortium, thus justifying TRL2, the objective of this project is to target TRL4, where an innovative 3D printed product based on biopolymer-clay nanocomposite will be developed, tested and validated. The concept of the 3D_ALSAC project resonates with the long-term vision of the research teams and especially that of the economic agent, of developing custom extracellular matrices for bone regeneration using the patient's stem cells. Thus, the 3D_ALSAC project opens new possibilities for collaboration with the economic environment in order to implement efficient and cost-effective solutions. The 3D_ALSAC project will lead to the evolution of the fields of materials science and regenerative medicine by repairing parts of the skeleton of the human body using innovative biomaterial based inks and 3D printing techniques and obtaining personalized implants, serving as the basis for new therapies used for bone tissue regeneration. The 3D_ALSAC project will closely monitor the improvement of the Romanian research performance internationally through an intensive and qualitative dissemination plan aimed at publishing at least 4 scientific papers in prestigious and open-access journals, with a cumulative impact factor greater than 15, at least 10 presentations at scientific events, 2 work-shops, 2 patent applications and, in addition, contributions to the development of 2 PhD/master/bachelor theses, according to the intellectual property agreement previously signed between the partners of the Consortium.
Read more
Advanced nanoparticle-based materials with synergistic effect on neuronal oxidative stress and beta-amyloid fibrillation for preventive treatment in Alzheimer's disease
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-4657
2020
-
2022
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA BUCURESTI (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
https://www.icechim-pd.ro/ro/syst_heter/sisteme_heterogene_nanonerves.html
Abstract:
This project aims to develop and to validate a new product and its technology with application in preventive treatment of Alzheimer's disease. This new product includes bioactive ingredients with effect on neuronal oxidative stress (curcumin) and beta-amyloid fibrillation (Ag and ZnO functionalized nanoparticles), and a nanocarrier (PEG-functionalized silica particles), that can act itself as a beta-amyloid fibrillation inhibitor. The main project novelty is related to: (i) study of the interaction of new formulations based on Ag or ZnO NPs and Curcumin encapsulated in functionalized silica NPs with beta amyloid fibrils and (ii) a sistematic and rational scientific approach to strike a balance between the effect of modifying the kinetics of amyloid beta fibril formation and the prevention of toxic effects (otherwise known) on neurons. Project objectives are: (i) to optimize product components and to improve their compatibility; (ii) to develop demonstration model, through components integration and (iii) to test and to validate the demonstration model, on laboratory conditions. Objectives are related to different TRLs: improved compatibility and optimal composition of new formulations based on Ag or ZnO NPs and Curcumin encapsulated in functionalized silica NPs (1st objective) allow properties analysis and improvement (TRL 3). Components integration (2nd objective) and product testing in laboratory conditions (3rd objective) permit technological development up to TRL 4.
Read more
Algorithm for valorification of entomological and leather residues in multivalent systems for skin tissue regeneration
Call name:
P 2 - SP 2.1 - Proiect de transfer la operatorul economic
PN-III-P2-2.1-PTE-2019-0655
2020
-
2022
Role in this project:
Coordinating institution:
BIOTEHNOS SA
Project partners:
BIOTEHNOS SA (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU TEXTILE SI PIELARIE-I.N.C.D.T.P. BUCURESTI SUCURSALA BUCURESTI INSTITUTUL DE CERCETARE PIELARIE - INCALTAMINTE I.C.P.I. (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Affiliation:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Project website:
https://5-pte.biotehnos.ro/
Abstract:
The project is focused on strengthening of the innovation capacity and development of technologies and products by the implementation of optimized biotechnologies for obtaining structural compounds with healing effect (chitin and keratin) from entomological and skin residues and innovative multicomponent associations (plant extracts and bio- efficient intermetallic materials) with the purpose of obtaining, by 3D-printing technology ,of integrated systems for the delivery of active principles. We propose to obtain at least three prototypes (dressing / polymeric 3D matrix, with integrated active principles; film forming gel and powder), aiming skin regeneration, an essential element in the therapies for chronic skin diseases like „non-healing wounds” / „delayed healing wounds” with high incidence in population. The complex transition of the project’s technological maturity will made gradually, with different stages of initiation TRL4 / TRL5, based on experimental and technological know-how towards the validation of the multicomponents system (keratin / chitin / plant extracts / magnesium boride / 3D matrices), and proof of „in vitro”- „in vivo” intercorrelated efficacy by accelerated skin regeneration models. The innovative character is given by: the biotechnological valorification of the entomological and skin residues; associations of structural compounds / herbal extracts / intermetallic antimicrobial structures; top-of-the-line advanced topical formulations - 3D-printing for skin regeneration, with impact on personalized medicine in Romania. The concept of multifunctionality and the multidisciplinary approach to the biotechnological valorisation of entomological and skin residues opens excellent opportunities for all the partners involved in the project and promotes the implementation of new technologies in the industry in line with the integral exploitation of raw materials
Read more
Emerging technologies for the industrial capitalization of 2D structures (graphene and nongraphenic)
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0387
2018
-
2021
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA DIN CRAIOVA (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=49
Abstract:
EMERG2Ind is a complex solution that responds to the needs of Romanian research on one side through a institutional management and development mechanism, but at the same time it is a complex interface tool for the Romanian automotive industry as a development engine and integrator for the horizontal and vertical integration of the Romanian economic resources. International expertise is available in an attempt to develop concrete solutions in the country. Emerging technologies are being developed up to TRL4 and TRL5, through complementary harmonization of three strategic subprojects. The complex project approach is regional and institutional with cumulative indicators that fully meet the requirements and seeks to maximize the use of the funding instrument.
Read more
Contingency of CBRN hazards and improvement of national security resources
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0395
2018
-
2021
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); Ministerul Apararii Nationale prin Centrul de Cercetare Stiintifica pentru Aparare CBRN si Ecologie (RO); Academia Tehnica Militara (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); CENTRUL DE CHIMIE ORGANICA AL ACADEMIEI ROMANE "C.D.NENITESCU" (RO); Centrul de Cercetare Stiintifica pentru Fortele Navale Constanta (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=40&lang=ro si http://icechim-rezultate.ro/proiect.php?id=33&lang=en
Abstract:
SECURE-NET is a Complex Project designed to improve the institutional performance of the Consortium Research Partners (Institutions with Re-launch Capabilities in the Field of National Security). In this respect, the Complex Project proposes five research themes corresponding to the five Component Projects, which aim at: (i) contingency of chemical, biochemical, radiological and nuclear (CBRN) hazards by developing new decontamination products and by developing specific sensors for detecting chemical agents of combat, and (ii) improving national security by developing shock-absorbing composites, solid rocket fuel and multispectral camouflages. This Complex Project brings together institutions with tradition, having either similar specialisation or complementary specialisation, to strengthen scientific and technical competences in the field of National Security and Advanced Materials for military applications. The Project Consortium has a gender-balanced staff and promotes the involvement of a large number of teachers, researchers, doctoral students and post-doctoral students in all activities proposed by the Common Agenda. In addition, the project facilitates the transfer of scientific knowledge between participating institutions as well as the recruitment and training of new staff. The multitude of results generated by the implementation of SECURE-NET express the potential for significant influence upon (i) the scientific community through communication and dissemination of results (as a short- and medium-term impact), and (ii) the public and private environment by promoting new research services and new transferable products / technologies to the external environment of the Consortium, particularly to the national defence industry (as a long-term impact).
Read more
Increasing the institutional bioeconomic research capacity for innovative exploitation of local plant resources to obtain horticultural products with high added value
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0332
2018
-
2021
Role in this project:
Coordinating institution:
UNIVERSITATEA PITESTI
Project partners:
UNIVERSITATEA PITESTI (RO); INSTITUTUL DE CERCETARE-DEZVOLTARE PENTRU POMICULTURA MARACINENI (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU BIOTEHNOLOGII IN HORTICULTURA STEFANESTI-ARGES (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); STATIUNEA DE CERCETARE-DEZVOLTARE PENTRU POMICULTURA CONSTANTA (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE CRAIOVA (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE IN SUDURA SI INCERCARI DE MATERIALE - ISIM TIMISOARA (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
https://www.upit.ro/ro/academia-reorganizata/facultatea-de-stiinte-educatie-fizica-si-informatica/departamente-la-nivelul-facultatii-de-stiinte-educatie-fizica-si-informatica/departamentul-stiinte-ale-naturii2/proiect-biohortinov
Abstract:
The complex project Increasing the institutional bioeconomic research capacity for innovative exploitation of local plant resources to obtain horticultural products with high added value comprises the following four projects:
Project 1."Complex electronic system with intelligent algorithms for data processing used for monitoring the developing conditions of water and biocenotic stresses, for warning about their presence and preventing them in horticulture"
Project 2."Multisensory quantification of water and biocenotic stress in horticulture through phytomonitoring and early warning in climate change conditions"
Project 3."Development of plant extracts and innovative phytosynthesized nanostructured mixtures with phytotherapeutical applications aimed at eliminating the biocenotic stress in horticultural crops"
Project 4."Innovative technologies for advanced processing of plant resources from pomiculture and viticulture"
The objectives of the project aim to develop the research capacity of the public organizations involved. Thus, upon the completion of the projects these organizations should meet the following outcome indicators: 1) employing new staff in research positions; 2)training the new and old employees through initial research training courses and specialist courses offered by each of the partners in their own field of competence (using the logistics of the learning resource centers); 3)obtaining new or significantly improved products/technologies/services; 4)structuring the offer for research and technological services and presenting it on the platform www.erris.gov.ro; 5)strengthening the capacity of the partner institutions through recovery strategies such as training programmes (research)/specialization programmes and visits (short-term); 6)offering and performing research services using the available research infrastructure; 7)creating a common programme for the learning resource centers, correlated with the institutional development plan of each partner
Read more
Closing the bioeconomy value chains by manufacturing market demanded innovative bioproducts
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0569
2018
-
2021
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO); UNIVERSITATEA "DUNAREA DE JOS" (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU STIINTE BIOLOGICE (RO); UNIVERSITATEA AUREL VLAICU ARAD (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=51&lang=ro
Abstract:
Agriculture and food industry in Romania generates large amounts of co/by-products, which are not used and turn into wastes, with negative impacts. The approach of the project PRO-SPER is to develop integrated processes, flexible and interconnected, to transform a number of agro-food by-products in bio-products, with market demand. This approach facilitates the achievement of project goals, complex-coordination and linking of the research organizations that are members of the Consortium, INCDCP-ICMPP, UDJ, ICECHIM, INCDSB and UAV, for improving their institutional performance in the field of nano-and bio-technologies of their application into bioeconomy.
The overall objective of the project PRO-SPER is to increase the impact of research and development activities and innovation of the RDI institutions, by developing and harnessing innovative technological solutions for bio-nano-processing of several by-products from the bioeconomy value chains, for recovering and/or formation of value-added components and their use in order to obtain products with high added value.
Expected results through the implementation of the project (21 new jobs, 23 national patent applications and international patent applications 6 EPO/WIPO; 10 technologies/new products resulting from the project, at a level of technological maturity to enable taking over by the operators, 5 services research and technological research services 10 cheques, 10 experiments cheques services
80 internship of young researchers from and within partner institutions, 50 visits for developing new techniques for working jointly in the Consortium, 30 training internships for new employees, 28scientific papers, 1 joint program CDI, in line with the development plan of institutional partners) have a significant impact on the capacity-building of the partners in the Consortium.
Read more
Smart materials for medical applications
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0407
2018
-
2021
Role in this project:
Coordinating institution:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Project partners:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); CENTRUL DE CHIMIE ORGANICA AL ACADEMIEI ROMANE "C.D.NENITESCU" (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "CAROL DAVILA" (RO); UNIVERSITATEA BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE CHIMICO - FARMACEUTICA - I.C.C.F. BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "GRIGORE T. POPA" DIN IAŞI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU" (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
https://intelmatupb.wixsite.com/intelmat
Abstract:
INTELMAT project represents advanced research in the field of synthesis and application of smart materials for medical engineering in order to solve essential features of some acute/chronic diseases of large occurrence. 5 thematic directions are taking into consideration: 1. Developing of a controlled-release system of complex micro-colloidal architectures based on bacterial cellulose and hydrogels used for management of chronically wounds which aims to overcome the limitations of classical treatments; 2. Developing of new biomaterials specially designed with targeted action for treatment of inflammatory diseases of gastrointestinal segment; 3. Synthesis of new generation of composite membrane materials for artificial kidneys based on biocompatible polymers and derivative graphene; 4. Developing of some auto-assembly 3D platforms with controlled-released drugs based on polymeric nanoparticles and composite nanogels for the therapy of colon-rectal cancer; 5. Developing of innovative technologies for the synthesis of some 1D nano-architectures (nanowires) with controlled morphology, with applications in producing of non-enzimatic electrochemical biosensors.
Read more
Multidisciplinary complex project for the monitoring, conservation, protection and promotion of the Romanian cultural heritage
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0413
2018
-
2021
Role in this project:
Coordinating institution:
AGENTIA SPATIALA ROMANA
Project partners:
AGENTIA SPATIALA ROMANA (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA DE STIINTE AGRONOMICE SI MEDICINA VETERINARA (RO); MUZEUL NATIONAL AL UNIRII ALBA IULIA (RO); MUZEUL CIVILIZATIEI DACICE SI ROMANE (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://ro-cher.rosa.ro
Abstract:
The Cultural Heritage (CH) can represent one of the decisive factors for the standard of living and for the quality of life specific of different communities, can contribute to the prevention of cultural globalization, can support the cultural diversity and can positively influence the economic development. The protection of the CH represents a major concern for decision-makers, local communities and European citizens. At the European Union level, the year 2018 has been declared The European Year of Cultural Heritage. In the same time, Romania faces a very important historical celebration: The Centenary of the Great Union from 1918. The RO-CHER project proposes a multi-disciplinary innovative methodology that integrates high level scientific knowledge for safeguarding the cultural heritage and that targets the development of synergetic scientific activities in the framework of the 4 complementary component projects by: monitoring the CH objectives with the aid of space technologies; development of materials and innovative techniques based on soft nanomaterials for safeguarding the cultural heritage; recommendation of an integrated management system (conservation, restauration, protection) for mobile and immobile CH objectives; promoting CH by using state-of-the-art technologies of digital reconstruction. The specific results indicators, predicted since the pre-implementation phase, are: new jobs in research (7); patent requests (6); results validation and transfer to the economic environment; design and development of the services offer and the research infrastructure; mutual access of partners at equipments and technology; institutional capacity building by internships/training sessions and working visits; joint R&D&I programme, correlated with the development strategy of each partner, all of these leading to the creation of a knowledge cluster, being able to successfully access national and international funding.
Read more
Innovative technologies based on polymers for the obtaining of new advanced materials
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0428
2018
-
2021
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE CHIMICO - FARMACEUTICA - I.C.C.F. BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); UNIVERSITATEA BUCURESTI (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=41&lang=ro
Abstract:
The project is aimed at using the expertise that involved in consortium entities acquired in materials science. The consortium consists of three representative national institutes: INCD for Chemistry and Petrochemistry – ICECHIM Bucharest, INCD for Electrochemistry and Condensed Matter - INCEMC Timisoara and INCD of Chemical Pharmaceutical - ICCF Bucharest, and of two prestigious universities: University POLITEHNICA of Bucharest and the University of Bucharest and a remarkable institute of Romanian Academy: Institute of Macromolecular Chemistry – Petru Poni Iasi. Although having great tradition and noteworthy results, the first five institutions face a series of problems, from the lack of financial funds, equipment and the aging employees for ICCF and partly for INCEMC and ICECHIM, to the lack of highly qualified staff required for recent investments in equipment for all 5 institutions. In this respect, the project attempts relaunching the activity in the first 5 institutions of the consortium, by putting together the existing competencies, so as to develop new technologies in order to obtain new materials with high performance properties. Given that, 3 of the research teams are specialized in polymers (ICECHIM, Petru Poni and UPB) the developed technologies will use the polymers as intermediates or as a component in the finished product. To this end it is envisaged getting the titanium nitride for prosthetic coatings via inorganic-organic polymer nanocomposites, obtaining photocatalytic materials and antibacterial coatings by sol- gel reactions, obtaining of short-life or one-time use biomaterials from aliphatic polyesters and micro or nanocellulose and the development of new polyphase materials with medium or long life, based on biopolymers, through 3D printing. The project intends the full use of A1, A2, B and C checks in order to increase the institutional performance of partners.
Read more
HOW TO PROTECT WATER, SOIL AND PLANTS PRODUCTION ALL TOGETHER
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET - COFUND
COFUND-WATER WORKS ERANET 2015-ProWsper
2017
-
2020
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU PEDOLOGIE, AGROCHIMIE SI PROTECTIA MEDIULUI - ICPA BUCURESTI (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=23&lang=en
Abstract:
The need for innovative strategies for water and soil protection that substitute the time-, energy- and resource-consuming remediation processes with other more efficient and environmentally-friendly is becoming urgent. In this respect, the interest of this project is to promote such solutions for public and private practitioners and to up-rise industrial competitiveness through economically sustainable technologies/products, in the Agriculture Field and indirectly in the Water Management aria. Therefore, this project practically develops protective composite layers (as end-products) with high efficiency towards pollution of underground water and soil, but without affecting the plants growth. ProWsper is an experimental and demonstrative research project conducted in partnership with four prestigious Institutions, from three European countries (Romania, France and Portugal) that face these common problems. In order to succeed, the implementation gap from Prototyping to Marketing and thereafter to practitioners will be narrowed by social/industrial awareness campaigns using various channels.
Read more
Biocompatible multilayer polymer membranes with tuned mechanical and antiadherent properties
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-2164
2018
-
2020
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
https://icechim-rezultate.ro/proiect.php?id=35&lang=en
Abstract:
Post oncologic intervention prosthetic materials are made from synthetic polymers which induce significant clinical complications such as fistula formation, erosion of adjacent organs, intra-abdominal adhesions, infections and inflammation besides pain. Thus, designing novel biomaterials able to overcome these disadvantages have become an important goal for the scientific community. The proposed project aims to develop new biocomposite systems with tailored antiadherent and antibacterial functions in the form of a membrane with multilayer structure (BIOMULTIPOL), intended for pelvic prosthetic meshes. The objectives of this project will be achieved through the use of polymers with improved biocompatibility: nanocellulose (NC), poly-L-lactic acid (PLLA) and poly(3-hydroxybutyrate) (PHB), these materials exhibiting an increased resistance to bacterial infection compared to non-biodegradable synthetic materials. The project approach is new and is based on the association of different biocomposite layers, each having a well defined function, thus mimicking the natural structures. Another innovative aspect is related to the multiple role of NC, which enhances the mechanical properties and improves the biocompatibility of the BIOMULTIPOL membrane, eliminating the mesh-related complications. The proposed BIOMULTIPOL membrane will assure the needed mechanical support (Lm layer), antiadherent (La layer) and antibacterial (Lb layer) properties. Various highly hydrophobic compounds and different antibacterial agents will be screened for achieving the desired antiadherent and antibacterial properties.
The assessment of the BIOMULTIPOL membrane model for biomedical applications will be performed based on the analysis of physico-chemical and mechanical properties and on the complex biological evaluation (biocompatibility, antibacterial and biodegradability tests).
Read more
Advanced hybrid surfaces for biosensing Bacteria Endotoxins
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-1006
2018
-
2020
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=34&lang=en
Abstract:
One of the current global issues refers to drinking water or food quality and medical hazards from the exposure to pathogenic bacteria. Despite the gross investment on research to reduce the incidence of infections in humans, the simplest and most successful strategies in preventing bacteria spreading have proven to be the best hygiene practices. Hence, bacterial contamination can be prevented if properly detected. In this respect, biosensors can be applied to a large variety of samples including body fluids, food samples, cell cultures to analyze environmental samples. As a result, the project BACTERIOSENS proposes the preparation of advanced hybrid surfaces (namely molecularly imprinted polymer nanofilms, MIP NFs) able to sense lipopolysaccharides (LPS)-the endotoxin membrane of Gram negative bacteria (GNB). This is a multidisciplinary project resulting in innovative synthesis technologies for LPS-MIP NF and LPS biosensors. The specific output of the project will lead to various outcomes during project implementation (mid-term scenario: at least 3 ISI publications and 3 communications, 1 national patent claim and website of project) and also after project end (long-term scenario: new research themes, research and development roadmaps, performance data, transferable knowledge to lead-users). The scientific outcomes are expected to have several impacts with potential benefits within scientific, economic and social areas at the national level (during project implementation) and at the international level (when the innovative technologies for the preparation of LPS biosensors are transferred to potential beneficiaries). The work plan and methodologies are straightforward and the resources (meaning the infrastructure: laboratories and instruments; and the highly qualified Project leader and the young team members: 3 Postdocs, 2 PhD fellows, and other 5 young specialists) are well-balanced according to the activities employed for the project successful implementation.
Read more
Ligand-free targeted delivery nanogels for phospholipase A2 retention
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-1876
2018
-
2020
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
https://icechim-rezultate.ro/proiect.php?id=32&lang=en
Abstract:
It is well known that the venom from the Hymenoptera insect class (bees, wasps, ants) are potent neurotoxic due to secreted phospholipase A2 enzyme (PLA2). For instance, bee venom PLA2 enzyme acts synergistically with the polyvalent cations (toxins) in the venom creating an increased haemolytic effect and a quick access of toxins into the blood flow, targeting important organs like the brain, kidney and liver. In spite of recent technological developments, effective and safe therapies are currently not available for treating the victims of mass insect attacks. Yet, thanks to advances in the fields of Nanotechnology, removing of PLA2 enzyme from sting zone, can be accomplished by targeted delivery systems called ligand-free nanogels. The proposed concept for preparing ligand-free nanogels is original and uses bifunctional macromonomers, small molecule cross-linkers and PLA2 template molecules to create antibody-like recognition sites for PLA2 subsequent retention. Hence, PLANano holds significant influence upon the scientific community by new concepts and methodologies for free-ligand nanogel targeted delivery systems (short-term impact: 3 ISI papers, minimum 3 communications, 1 national patent claim, web site of project) and by opening new research directions associated with the side-impacts of the research (like new imuno-therapies) as long term impact. Implementation of this project will also bring specific scientific, economic and social benefits at the national level and at the international level. The greatest impact is given by the health value, if taken in consideration the advantages of the innovative ligan-free nanogels over conventional antivenom production. Plus, the existing infrastructure of the Host Institution is appropriate to sustain the proposed tasks for PLANano successful implementation. But most importantly, the young research team composed of young specialist, post-docs and PhD fellows is highly qualified in this direction.
Read more
Development of a demonstrator to produce next generation plant biostimulants based on root exudates
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET - COFUND
COFUND-MANUNET III-DEMETRE
2018
-
2020
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); CHEMI CERAMIC F SRL (RO); RODAX IMPEX S.R.L. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=47&lang=ro
Abstract:
Plant biostimulants are a new class of agricultural inputs, which increase nutrient uptake and nutrient use efficiency, improve plant tolerance to abiotic stress and enhance crop quality. The DEMETRE project aims to develop and to validate devices, tooling and equipment needed to (bio)manufacture a new product, from the (emerging) next generation of plant biostimulants. The proposed new plant biostimulants product is based on concentrated bioactive compounds from root exudates. The main innovation overcurrent state-of-the art is related to the new, flexible (bio)manufacturing method, which join two known products in a two-in-one synergic product. During its use, the proposed two-in-one product will fulfill two functions: as soil conditioner and as reservoir for the slow release of the selected bioactive compound(s). The needs addressed by the project DEMETRE are related to: (i) agricultural market requirements for new inputs, reducing the consumption and the environmental impact of agrochemicals while maintaining / increasing profitability; and (ii) societal requirements for a circular (bio)economy, wherein the loop is closed due to the valorization of agroindustrial byproducts. In the last years the interest of the economic agents and researchers for the development of new, more active plant biostimulants have been growing. Such active ingredients were proposed to be searched among exosignals, which regulate the plant – beneficial microbes interactions. Root exudates are a source of chemical signals shaping rhizosphere interactions, thus are a logical target to produce next generation plant biostimulant.
Read more
A next generation plant biostimulants product
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2016-0253
2017
-
2018
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); CHEMI CERAMIC F SRL (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=33
Abstract:
This project aims to develop and to validate a new product, from the (emerging) next generation of plant biostimulants. This new product includes concentrated active ingredients, from a new bio-resource, and a carrier, acting itself as a plant biostimulants. Plant biostimulants assure sustainable intensification of agricultural production, in face of major challenges. The main project novelty is related to: (i) the active ingredient concentration process, from a new bio-resource, assisted by a new electrochemical technique, for peroxynitrite determination and (ii) the formulation process, wherein a carrier with biostimulants characteristics is used. The existing category of non-microbial plant biostimulants are extracts of organic fertilizers / organic amendments, traditionally used in agriculture. Organic non-microbial plant biostimulants shall contain “carbon of solely animal or plant origin” (COM (2016) 157), thus the next generation of more active and more efficient plant biostimulants will be concentrated bioactives from the present / existing extracts. Project NEXUS objectives are: (i) to optimize product components and to improve compatibility; (ii) to develop demonstration model, through components integration and (iii) to test and to validate demonstration model, on laboratory conditions. Objectives are related to different TRL. Improved compatibility and optimal composition of microalgae extract (1st objective) allow critical function and/or characteristic analysis and improvement (TRL 3). Components integration (2nd objective) and product testing in laboratory conditions (3rd objective) permit technological development till TRL 4. The project work plan is divided into 6 activities (Work Packages): WP1 Humic acids loaded macroporous ceramics; WP2 Optimized microalgae concentrated extract; WP3 Concentrated bioactives inclusion into humic acids – porous ceramic; WP4 Bioassay of biostimulant activities; WP5 Dissemination and exploitation; WP6 Management.
Read more
Conversion of phytogenic silica reach food industry by-products into value-added products
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
ERA IB2 ERANET-ERA-IB-15-129-Convert-Si
2016
-
2018
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA DE STIINTE AGRONOMICE SI MEDICINA VETERINARA (RO); LABORATOARELE MEDICA S.R.L. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=48&lang=ro
Abstract:
Convert-Si project aims to develop optimized processes for a total conversion of industrial plants by-products into value-added products. Main innovative contribution is related to the introduction of a (pre)treatment step based on new microbial products: non-catalytic small proteins from cerato-platanin family (CP), which weaken (ligno)cellulose structure, metabolites from silicon solubilizing microorganisms (SiM) and super-active ligno-cellulolytic enzymes Convert-all project integrated approach is intended to close a biomimetic industrial symbiosis. The by-products of one conversion process represent raw material for other conversion steps. Convert-Si proposed cascade process is applied to two value-added chains: cereal husks and/or bran, fruit/grape pomace. From these the following ingredients are recovered: anti-oxidant polyphenols and/or feruloylated oligosaccharides, useful for new cosmetics and dietary supplement products; essential oil terpenes and (brassino)steroids, trapped and/or bounded by/to lignocellulose network, with plant growth stimulating and/or insects repellent activities; biosilica (BSi); fermentable carbohydrates, recalcitrant lignin. BSi, fermentable carbohydrates and recalcitrant lignin are converted into mesoporous silica nanoparticles, value added fermented food / feed (probiotics) supplements and, respectively, substrate for plant biostimulants formulation. Mesoporous silica nanoparticles are used for the “ smart”, controlled released formulation of the recovered polyphenols, essential oils, and (brassino)steroids. Recalcitrant lignin, together with the biomass of CP producing microorganisms and, respectively, SiM will be used for the production of a complex plant biostimulant. Safety and efficacy of biosilica nano-particles and “smart” formulated phytoextracts will be tested by state of the art high through-output cell assay.
Read more
Increasing performance/competitiveness by improving the technology of smart products fabrication with superior biocompatibility and antibacterial properties for cosmeto-medical applications
Call name:
P 2 - SP 2.1 - Transfer de cunoaștere la agentul economic „Bridge Grant”
PN-III-P2-2.1-BG-2016-0142
2016
-
2018
Role in this project:
Coordinating institution:
UNIVERSITATEA BUCURESTI
Project partners:
UNIVERSITATEA BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); SONNENKREUZ SRL (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.unibuc.ro/n/cercetare/94BG-2016.php
Abstract:
The purpose of this project is to increase the performance and the competitiveness of SC Sonnenkreuz SRL by using the expertise existing in the research organizations, University of Bucharest and INCDCP-ICECHIM, for developing and optimizing the modern technology for producing silver colloid dispersions, in order to obtain a product with higher biocompatibility and antimicrobial properties. To accomplish the purpose of the project, a full compliance between the requirements and the problems identified by the economic agent and the project objectives was followed. Two directions for innovating the final product and the manufacturing processes will be pursued: (i) obtaining of various colloid silver dispersions stabilized with polymers having intrinsic antibacterial activity, to achieve a synergistic effect and (ii) optimizing the production technology by electrochemical method by ensuring the control of nanoparticles growth. The knowledge transfer will include also the collaboration with the economic agent in order to identify the possibility of a subsequent development of other cosmeto-medical products based on the dispersions of silver nanoparticles with improved properties. For developing the quality assurance system at the economic agent, the collaboration between the partners UB and INCDCP-ICECHIM with SC Sonnenkreuz SRL will be intensified in order to accomplish the analyzes required for the characterization of the final products and to monitor the manufacturing process. Cooperation with the economic partner will be fulfilled by the activities of entrepreneurship knowledge transfer towards the researchers/PhD students/Master students involved in the project. Development of the new product and improvement of the technology will provide opportunities for practical training for master students, with a complex topic. The publishable scientific results will be widely disseminated in communications and articles in specialized journals.
Read more
Contributions to enhancing the Sanimed SRL’s competitiveness by the knowledge assimilation and potential production implementation of some 3D collagen-polymer hybrid matrices intended to tissue repair
Call name:
P 2 - SP 2.1 - Transfer de cunoaștere la agentul economic „Bridge Grant”
PN-III-P2-2.1-BG-2016-0397
2016
-
2018
Role in this project:
Coordinating institution:
UNIVERSITATEA BUCURESTI
Project partners:
UNIVERSITATEA BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); SANIMED INTERNATIONAL IMPEX S.R.L. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.unibuc.ro/prof/micut_m/
Abstract:
The project proposal mainly aims at knowledge transfer to economic operator regarding the obtaining and development of 3D collagen-polymer hybrid biomaterials intended to biomedical applications. The practical implementation of the proposal should lead to enhancing competitiveness of private economic entity in order to develop itself in the near and middle-term future. In line with economic partner, the public entities University of Bucharest and ICECHIM (project partners) have identified aspects of scientific and technological existing at private partner, the weaknesses and strengths of these aspects, as a useful basis for designing new collagen-based hybrid biomaterials. In addition, the purpose that such kind of biomaterials be used in the process of tissue repair requires accounting a number of key characteristics against which it is possible to design, realize and develop this kind of hybrid collagen-polymer system: biocompatibility, bioresorbability, mechanical properties, internal and external morphology and manufacturing technology.
Read more
Novel anti-corrosion and anti-icing ZnO nanostructured materials obtained by ecofriendly methods – NOCORIC
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2016-1332
2017
-
2018
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA BUCURESTI (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.icechim-pd.ro/ro/syst_heter/sisteme_heterogene_nocoric.html
Abstract:
NOCORIC project consists in designing of new nanostructured organic-inorganic hybrid materials for coating of metallic surfaces (e.g. zinc, aluminium, copper). Techniques used in this project for the synthesis of coatings for metallic substrates, are the sol-gel process and the ecofriendly synthesis - supercritical fluids. These technologies will not affect the quality of the environment, thus are included in the category “ecological and high tech”. The project aims to identify the success factors and the difficulties in obtaining of coatings on metals with protection against corrosion and anti-icing, and their influence on economic activities. The approach is original, combining the production of coatings from zinc oxide type materials and organic-inorganic hybrids with physical properties of surfaces. Depending on the stability of the dispersions obtained from the sol-gel process, silica precursors with various functionalities will be used. Both the Coordinator (ICECHIM) and Partner 1 (UB) have experience and results in synthesis of zinc oxide nanoparticles through sol-gel process and characterization of nanoparticles morphology. Another novelty is corroboration of sol-gel synthesis (easy composition control, film homogeneity, low cost, facile fabrication) with supercritical fluid method, which tends to be closer with “green chemistry”. Currently, this „eco-friendly” method is not investigated enough for zinc oxide materials and organic-inorganic hybrids. Partner 1(UB) has experience in synthesis of zinc oxide nanoparticles through ecofriendly supercritical fluids synthesis. Nanostructured materials characterization will be realized to assess the hydrophobic and morphological characteristics: dynamic light scattering, environmental scanning and transmission electron microscopy, FT-IR spectroscopy, contact angle measurements etc. The corrosion resistance of obtained hybrid films deposited onto metal substrates will be studied by a third partner.
Read more
Optimization and validation of an advanced material and technology default based on biopolymer-modified clay as carriers for controlled release of doxorubicin in gastrointestinal tract
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2016-1896
2017
-
2018
Role in this project:
Project coordinator
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); INSTITUTUL DE BIOCHIMIE (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.icechim-pd.ro/ro/syst_heter/sisteme_heterogene_doxsaclay.html
Abstract:
The goal of the project DoxSaClay is to obtain, optimize and validate a new product and the associated technology reffering to the advanced material “biopolymer IPN hydrogel networks-modified clay-bioactive agent”. Preliminary results related to polymer-advanced modified clay nanocomposite materials are already demonstrated by the team’s publications. The consortium offers a high level of competencies in biomaterials domain, the Project Coordinating team having a great expertise in the synthesis of advanced materials while the competencies of Partner being related with in vitro testing on cell lines. The method will connect Salecan biopolymer with pH responsive (co)polymers to design new semi-interpenetrated networks (SIPN) with encapsulated amphiphilic nanoclays by free cross-linking radical co(polymerization) to render tunable and efficient advanced materials with enhanced mechanical strength, improved stability and adjustable responsive properties, for the controlled release of anti-cancer drug-doxorubicin in gastrointestinal tract. New delivery methods, particular delivery of doxorubicin, could make a dramatic impact to the medical community who administers the cancer treatment and the patient who endure the effects of the cancer treatment. The local, oral delivery of anti-cancer drugs to the colon maybe made possible by using designed technology, own modified clays and biopolymer semi-interpenetrated networks, by assembling them into novel structures and architectures that can exhibit properties appropriate for the application at hand. Validation of the results will be achieved by ISI publications in prestigious peer-reviewed scientific journals, conferences with international visibility and at least one patent request. Another priority of the present project is to increase the international visibility and competitiveness of Romanian research for successful integration in European Projects (Horizon 2020).
Read more
Surface plasmon resonance multi-sensor for real time illicit drugs detection
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET - COFUND
ERA.NET.RUS PLUS-SNIFF - ICECHIM
2016
-
2018
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=20&lang=en
Abstract:
All over the world, billions of dollars are spent annually on chemical/biological detection related to medical diagnosis, environmental monitoring, public security and food safety because laboratory analysis using expensive equipment is usually cumbersome and time-consuming. During the last 20 years, global research and development on the field of sensors has expanded exponentially in terms of financial investment, the published literature, and the number of active researchers. Bio mimetic sensors will be used as “on-site” method by the authorities to provide enough information for routine testing and screening of transportation. The main advantages of using versatile sensors for fast drug tracing refer to cost-efficiency and “on-site” legal measures to prevent drug traffic and consumption. The general objective of “SNIFF” proposal is to develop efficient optical micro sensor arrays (optical multisensor) using surface plasmon resonance (SPR) for detecting various drug compounds i.e. LDS, cocaine, heroin or methamphetamine to prevent illegal transit and consumption of drugs. Furthermore, the sensitive membrane of the optical sensor will be tailored, using a molecularly imprinting technique (MI), to “sniff” (sense and detect) only the targeted drugs. The most obvious advantage of SPR sensors using MIPs as selective films is having a wide range of low cost functional monomers as well as cross-linking agents available which may be selected by various experiments to match the functional groups of the template molecule. MIP are to be synthesized directly on the thin golden layer of SPR sensor using two procedures: deposition of the compatible synthetic MI layer directly on the golden concave surface and grafting the MIM onto the Au functionalized surface. Apart the low cost, the new sensor will have a very good resistance in time, due to the synthetic polymer, the possibility of continuous monitoring and of the recovery and reuse.
Read more
“New drug delivery systems based on micro/nanogel composites containing natural bioactive substances”
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-0953
2015
-
2017
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.icechim-rezultate.ro/proiect.php?id=22
Abstract:
The overall objective of the project consists of obtaining micro/nanoparticles of covalently crosslinked hydrogels based on polyethylene glycol and aliphatic polyamines (injectable micro/nanogels) having embedded both natural nanozeolites but also of natural bioactive substances in their polymer structure, with potential pharmaceutical applications. These new micro/nanogel composite structures are of great interest as they are aimed at being used as devices for subcutaneous or intravenous injection, ensuring the release of bioactive substances in hard-to-reach areas (by macroscopic hydrogels). The role of natural nanozeolites incorporation is to allow for a much slower and controlled release of the embedded active substances and to improve the viscoelastic features of hydrogels. Nowadays bioactive substances play an important role in the development of controlled release systems in medicinal chemistry for the production of new drugs with fewer side effects. The use of phytoextracts as bioactive substances is a big challenge of the project proposal. These new micro/nanodevices with controlled release will have significant influence, both nationally and internationally on the scientific, social and economic field. The results will be disseminated as follows: three articles published in ISI journals; three scientific communications at international conferences, and patenting of any original aspect.
Read more
MULTIFUNCTIONAL AND INNOVATIVE PRODUCTS FOR SAFE AND BIOENHANCED FUNCTIONAL FOOD FROM NEWLY CULTIVATED PLANTS IN ROMANIA
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0995
2014
-
2017
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU STIINTE BIOLOGICE (RO); HOFIGAL EXPORT IMPORT SA (RO); CHEMI CERAMIC F SRL (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://produse.multifunctionale.icechim.ro
Abstract:
Thematic area of the project proposal is in the field of functional foods destinated to maintain human health in concordance with research theme 5.1.6. Functional foods to maintain human health and prevent diseases, Domain 5. Agriculture, food safety and security.
The general project objective is to develop multifunctional and innovative products for protection of nutraceutical plants newly introduced in Romania (Momordica charantia and Passiflora incarnata) and to stimulate concomitantly formation of biologically-active compounds in these plants, at stable levels and with reproducible biological effects. The specific innovative project objectives are: 1. development of multifunctional for treatments of soil and in vegetation, based on: (a) consortia of Trichoderma strains; (b) porous ceramics with high bioavailability of silica; (c) essential oils included in mesoporous silica; 2. Testing products, developing methods of application and integrating them with the sustainable cultural technology of nutraceutical plants; 3. characterization of functional foods through in vitro alternative tests on human cell cultures and highlighting the biological role of silica forms accumulated in treated plants in animal cells; 4. results exploitation by protection of intellectual innovative solutions after techno-economical analysis and opportunities of results exploitation.
Products based on consortia of Trichoderma strains and essential oils have multiple actions as: plant protection agents towards biotic stresses (phytopathogens, pests), elicitors of plant defence response, limiting agents for the negative effects of ethylene on roots and growth promotor of plant nutrition, mainly with nitrogen.
Porous ceramics containing silicaxerogel, applied as soil treatment, work as a matrix for controlled release of nutrients with high bioavailability and have role to compensate losses of plant metabolic energy due to the synthesis of secondary metabolites and to supply orthosilicates with high bioavailability.
Silicon with high bioavailability supplies also mesoporous silica as a carrying for controlled release of essential oils. The silicon’s role as an important element for plants is to activate and balance - concomitantly and non-antagonistically – the different ways of plant defence system and of stress hormones biosynthesis (salicylic acid, jasmonic acid and ethylene/abscisic acid) in plant pathosystems.
This project proposes for the first time to study interaction of silicon, Trichoderma and essential oils treatments, protection agents with multiple roles, which activates simultaneously plant defence response. It is the first proposal aiming the development of some products with applicability directly into practice, in which silicon is controlled released from supports, having concomitantly the functional role as a matrix, from which nutrients and volatile oils are smart-delivered, in this why pointing out the possibility of practical use of silicon in order to balance the main signalling pathways in plant defence response, integrated with elicitors for obtaining high productions with raised phytonutrients level.
The highlight of silicon’s role in animal and plant organisms (having into account the unity in diversity of the life world), the (meso)porous silica forms as a support for controlled release of some active ingredients and of bioavailable silicon, compatibility of the Trichoderma consortia with the other products for the directed activation of plant resistance, will be the coagulation axis of this trans-disciplinary approach, revealing - also - the existence of synergies between partners in the frame of MAIA Project.
Read more
Eco-friendly food packaging from last generation multifunctional bioplastics
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1569
2012
-
2016
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); METAV - CERCETARE DEZVOLTARE S.R.L. (RO); INSTITUTUL DE CERCETARI PRODUSE AUXILIARE ORGANICE S.A. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.bio-multi-pack.icechim.ro
Abstract:
The project proposes to carry out a technology for obtaining multifunctional materials based on last generation of biopolymers and bioadditives melt processable into catering food packaging. These packages will comply with the food safety conditions and will have physical – mechanical properties proper to the plastic products that are generally of commodity nature. The national and international novelty and added value of the project is determined by the originality of the propose new conceptual models for realising of new materials with improved thermal stability, small hygroscopicity, melt processable into catering food packaging. The elaboration of new solutions needs inter and transdisciplinary knowledge of chemistry, physics, physics and chemistry of polymers, mathematical statistics, process engineering, scale up and economics. The new technology has a great applicative potential and can be applied on the same industrial platform or on different platforms. All the novelty solutions will be disseminated and will be patented. At present on the Romanian market one can find only packaging made from imported oxobiodegradable pellets which has limited biodegradability. The realising according to the proposed new technology products which in nature will be totally destroyed in a very short time, would turn into the advantaje of beeing the only supplier, on the Romanian market for totally biodegradable products. The technology can be internationally applied by country with the same envoiroment problems as Ramania. The project consortium is formed from 4 partners: ICECHIM (CO), Politehnica University Bucharest (P1), SC Metav CD –SA (P2) and SC ICPAO SA (P3) with complementary expertise. The project manager is doctor and fulfill the eligibility conditions. P1 and P2 has project responsable that are doctors. Because of the great interest for the proposed subject P3 co–funded with 25 % from the entire project fund.
Read more
Thermosensitive energy saving systems with tailored solar reflecting/absorbing properties for construction structures
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1391
2012
-
2016
Role in this project:
Key expert
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); CHIMCOLOR S.R.L. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.thermosolar.roit.ro
Abstract:
In principle thermochromic and thermotropic systems can function as energy saving systems. For high temperatures, during summertime thermochromic coatings have the ability to reflect solar energy, reducing the surface’s temperature; while in wintertime absorb solar energy, increasing the surface’s temperature as reversible color change takes place. Applied thus on external building surfaces, they have the potential for the reduction of heating and cooling loads, contributing to the reduction of urban temperatures, fight heat island and reduce air pollution.
Color-changing compounds have become increasingly important in recent years in the study and the production of thermochromic coatings that is coatings which respond thermally to their environment, changing reversibly their color from darker to lighter tones as temperature rises. The novelty comes from the use concomitant of thermotropic hydrogels which respond thermally by changing transparency from total transparent to translucent. Combining these features of termotropic hydrogels and thermochromic dyes we can obtain complex thermosensitive systems that respond to an increase in temperature by switching the color hypsochromically while accompanied by a change in transparency of the hydrogels.
During the project we intend to develop thermosensitive energy saving coatings that action on the entire Vis-NIR range and are most typically applied to roofs but additionally can also be applied to exterior and interior walls in much the same way. Thermosensitive coatings that will aim to obtain change reflectivity and color as a function of temperature, present enhanced weathering and durability and may be in any suitable formulation for application on roofs or walls such as water-based, oil-based, epoxy-based or acrylic-based formulations.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 1.0627, O: 622]