Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
2008
Mrs.
Mihaela
Mic
Dr
-
n/a
Researcher
Personal public profile link.
Curriculum Vitae (01/10/2019)
Expertise & keywords
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Homogenous immunoassay technique based on functionalized nanoparticles. Application to detection of pesticide contaminant 2,4-dichlorophenoxyacetic acid from alimentary and environmental samples
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 1
PN-II-PT-PCCA-2011-3.1-0402
2012
-
2016
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH (RO); UNIVERSITATEA "ALEXANDRU IOAN CUZA" IASI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://proiecte.nipne.ro/pn2/138-proiecte.html
Abstract:
Immunological methods such as enzyme linked immunosorbent assay (ELISA) are increasingly becoming important for pesticides residual analysis due to the high specificity of detecting molecules like antibodies. These immunoassay methods are highly specific, sensitive (nanogram or picogram) and accuracy for the detection of low molecular weight contaminants presents in our environment. ELISA is a technique based on the ability of non-labeled antigen (e.g. pesticide) in a specific volume of standard solution or in an unknown sample to compete with a fixed of amount of enzymatic labeled antigen for a limited number of binding sites of a specific binding antibody protein. The objective of the project is to develop a new and innovative immunochemical technique based on functionalized nanoparticles, homogenous enzyme linked immunosorbent assay (HnELISA) technique for detection of pesticide contaminant 2,4-dichlorophenoxyacetic acid (2,4D) from alimentary and environmental samples. 2,4D is one of the most used herbicide in agriculture to control and destroy of the weeds that can affect agricultural crops. The remanence of this organochlorurate compound in alimentary products, transfer and contamination of ground water in the areas where this pesticide is used require the analysis of this chemical in order to establish the contamination level of the alimentary products and the environmental factors (water, soil).
The objective of the project is to develop an immunoassay technique with improved qualities in comparison with traditionally ELISA technique existed on the market for detection of pesticide contaminants from alimentary and environmental factors. Qualitative characteristics as sensitivity, accuracy, stability of the nanoimmunosorbent and low cost per assay are finally taken in account. Development of HnELISA technique would have practical application in monitoring of the pesticide contaminant 2,4D from alimentary and environmental samples.
Read more
Bioligand - macromolecule intermolecular interactions as probed by spectroscopic and microcalorimetric techniques
Call name:
Exploratory Research Projects - PCE-2011 call
PN-II-ID-PCE-2011-3-0032
2011
-
2016
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Tehnologii Izotopice si Moleculare, Cluj-Napoca
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Tehnologii Izotopice si Moleculare, Cluj-Napoca (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Tehnologii Izotopice si Moleculare, Cluj-Napoca (RO)
Project website:
http://itim-cj.ro/PNCDI/idei8/
Abstract:
The study of intermolecular interactions in solutions is of central importance to most chemical and biochemical disciplines. The solution behaviour of bio and macromolecules, their aggregation or intermolecular interactions is relevant for their biological activity. The binding affinity and the molecular recognition capacity can be described by the dissociation constant and the number of binding sites on the macromolecule. Any interaction that interferes with the binding of a bio-molecule to its receptor, such as competitive binding, may affect the pharmacological activity. The purpose of this project consist in the characterization of the molecular binding process between bio-ligands and receptors, using a variety of spectroscopic (nmr, uv/vis and fluorescence) and calorimetric techniques (ITC). Moreover, we intend to investigate the competitive binding process of two ligands to a macromolecular receptor and of two receptors to a bio-ligand. NMR is the major technique used to analyze the interaction between a bio-ligand and a receptor giving useful information about the, stoichiometry, stability, specific and non-specific binding sites. ITC is one of the most powerful and precise technique currently available to characterize the energetics of intermolecular interactions. It allows the binding functions ΔG, ΔH and ΔS to be determined within a single experiment and an accurate determination of the reaction stoichiometry and the dissociation constant.
Read more
Ion sensing and separation through modified cyclic peptides, cyclodextrins and protein pores
Call name:
Complex Exploratory Research Projects - PCCE-2011 call
PN-II-ID-PCCE-2011-2-0027
2012
-
2016
Role in this project:
Coordinating institution:
“Alexandru Ioan Cuza” University
Project partners:
“Alexandru Ioan Cuza” University (RO); National Research and Development Institute of Isotopic and Molecular Technologies (RO); “Babes-Bolyai” University (RO); “Horia Hulubei” National Institute for Physics and Nuclear Engineering (RO); “Carol Davila” University of Medicine and Pharmacy (RO)
Affiliation:
National Research and Development Institute of Isotopic and Molecular Technologies (RO)
Project website:
http://science.research.uaic.ro/biosens/
Abstract:
Development of nanostructures capable of detecting and separating individual molecules and ions has become an important field of research. Particularly, protein-based nanostructures are attractive due to their ability for tunable molecular recognition and ease of chemical modification, which are extremely important factors on various applications. In this project, self-assembly functionalization will be approached, aimed at providing an efficient design for molecular recognition, ion sensing and separation, through new host-guest chemical methodologies, bio-nanofabrication and physicochemical manipulations methods. New crown ether type macrocycles, functionalized cyclodextrins and cyclic peptides will be engineered to work as specific molecular adaptors for the -hemolysin protein, giving rise to hybrid molecular superstructures possessing ion sensing and selectivity properties. The size and functionality of the macrocycles are targeted to ensure the anchorage in the pores and the selectivity of specific host-guest complexation processes. A surface detector array device suitable for use with a biosensor is envisioned, through ink printing nanotechnologies. The device architecture will be formed of a substrate having a surface defining a plurality of distinct bilayer-compatible surface regions separated by one or more bilayer barrier regions. Custom designed nanoscale bilayers containing selected receptors through cyclodextrins derivatives and macrocyclic peptides, self-assembled on different micro-nano arrays surfaces (polymers, Au or Si) will be fabricated. Further engineering of such functionalized nanomaterials based on molecular recognition and host-guest methodologies, in conjunction with flexible and mechanically robust enough substrate platforms, have the great potential for applications such as separation of nanoparticles, sensors, drug delivery, removal of heavy metals from aqueous solutions and chiral separation.
Read more
Surface and Interface Science: Physics, chemistry, biology, applications.
Call name:
Complex Exploratory Research Projects - PCCE-2008 call
PN-II-ID-PCCE-2008-0076
2010
-
2013
Role in this project:
Coordinating institution:
INSATITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA MATERIALELOR
Project partners:
INSATITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA MATERIALELOR (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU INGINERIE ELECTRICA (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE CAROL DAVILA DIN BUCURESTI (RO); UNIVERSITATEA ALEXANDRU IOAN CUZA DIN IASI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA TEHNICA DIN IASI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE DIN CLUJ-NAPOCA (RO); UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA (RO); ACADEMIA ROMANA FILIALA TIMISOARA (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE VICTOR BABES TIMISOARA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE DIN CLUJ-NAPOCA (RO)
Project website:
http://www.infim.ro/projects/siinta-suprafetelor-si-interfetelor-fizica-chimie-biologie-aplicatii
Abstract:
This project intends to provide a financial background for developing the community of Surface Science in Romania. Thematics from physics and chemistry of surfaces will be tackled together with applications of surface science in biology and in technology; also new standards will be proposed for consistent data interpretation. The Project clusterizes the most important Romanian teams with preoccupations in surface science, namely all X-ray photoelectron spectroscopy teams with most of the community of thin film deposition, cluster and nanoparticle physics, surface reactivity, surface chemistry and photochemistry, multilayer physics and applications, magnetic fluids, functionalization of surfaces, cell attachment, studies of cellular membrane. The research teams belong to highly prominent Universities and Research Institutes from practically all geographical areas of the country. The Consortium disposes of infrastructure exceeding 10 million euros, of more than one hundreed highly qualified scientists which have generated during the past years more than 3 % of the national scientific visibility. The research will concentrate into four main areas: (i) magnetic properties of surfaces and low-dimensional systems; (ii) electrical properties of surfaces and heterostructures; (iii) surface chemistry; (iv) application of surface science in functionalized systems and in biology, together with (v) an area concentrating on standardization in X-ray photoelectron spectroscopy, Auger electron spectroscopy and related techniques. Each area is divided into several thematics; each thematic has at least one in-charge scientist. This Project will foster the surface science community in Romania and will contribute strongly to the development of high-technological industrial preoccupation in all geographical areas concerned. Several cutting-edge applications are also foreseen by pursuing the fundamental research proposed.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.3032, O: 152]