Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
Mihaela
Kusko
research scientist I
-
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Researcher | Scientific reviewer
ResearcherID:
not public
Personal public profile link.
Expertise & keywords
Nanotechnology
Transport phenomena
Nanocomposites
physical-chemical characterisation
photodetection
electronic devices physics
MEMS design and fabrication
energy conversion and storage devices
Power devices
Sensors
nanomaterials/nanocomposites
hybrid devices
Materials characterisation
silicon based nanocomposites
Polymers
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Hybrid flexible interface for energy purposes
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-1095
2015
-
2017
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.imt.ro/hyflep/
Abstract:
The driving motivation of this project proposal dwells in the development and investigation of graphene based materials (Gbm) suitable to be integrated in novel types of photovoltaic devices (PV) based on Gbm/Silicon heterostructures. Distinct from the already existing technologies based on graphene films and flakes that are very popular nowadays, the accent will be on graphene quantum dots (GQD), appealing in terms of energy level alignment, thus allowing probing new horizons in PV technology. Silicon heterojunctions formed with carbon based materials represent a solution because they can be considered as active photogeneration sites, percolated network for charge transport and charge carriers collection. Since the efficiency of a PV solar cell mainly depends on the ability of incident photons absorption and equally generated carriers collection, a targeted approach envisaging the development of a nanostructurated hybrid photovoltaic (PV) device, relaying on the use of flexible nanopatterned substrate (nanoSi) and graphene quantum dots (GQDs) is herein proposed.
Read more
RFID device for food traceability
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1268
2014
-
2017
Role in this project:
Partner team leader
Coordinating institution:
UNIVERSITATEA BUCURESTI
Project partners:
UNIVERSITATEA BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); OPTOELECTRONICA - 2001 S.A. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.3nanosae.org/p/foodtrack/
Abstract:
“RFID device for food traceability (Food track)” aims specifically to develop a self-sustainable RFID device, equipped with a sensor, which allows, not only the traceability of a certain food package, but also the level of freshness of its content. The need for active intelligent packaging equipped with nano-systems that can monitor the conditions of the food during transportation and storage has led the scientific community to the development of a novel based on the electronics on plastic. Electronic circuits supported on a cheap, flexible polymeric support that can be miniaturized up to micro and nano level promise to assure a fast and inexpensive quality control available for everyone. Radio frequency identification tags (RFID) are the most important development field today, based on the implementation of conductive polymers onto a flexible plastic support; they are similar to bar codes and have been used in food industry traceability, inventory management and security. But RFID systems can carry much more complex information, like temperature, relative humidity, gases and electroactive species, when equipped with a specific sensor and have the ability to transmit information up to 50 m. Thanks to their low-level complexity and cost, RFID have the potential to become the leading market in food control, especially if they integrate chemical sensor. This RFID-sensor assembly is the central component of the intelligent packaging system which, in contrast to active packaging does not influence properties of the food products, but collects the information about its state and transmits it to retailers, manufacturer, food authorities or customer.
Wireless sensor and sensor networks are the state-of-the-art in detection technologies; their use varies from homeland security to environmental protection. The key requirements for a sensor refer to sensitivity (the minimal level of analyte to detect), selectivity (exclusion of “false alarms” and the identification of a specific analyte) and response time (high-speed electronics are preferred since they provide a real-time analysis). The challenges which have to be overcome refer to finding a single technology that can unify the multitude of fabrication methods for different kind of sensitive layers, cheap materials, moderate costs, easy to use and long-time batteries.
The proposed instrument will be comprised of a self-sustainable source, a micro-RFID device and an electrochemical sensor with four sensitive functions, modulated for each type of food. The main component of the instrument is the sensor-RFID assembly. The sensitive layer of the sensor will be design to detect a broad range of properties, characteristic for the qualitative control of food: temperature, relative humidity, pH, number of refreezing cycles, volatile organic compounds and biogenic amines. The micro-RFID device will store and transmit the information collected from the sensor. The system will be powered by two metallic electrodes, chosen from the appropriate position in the table of chemical reactivity; the electrolyte solution will be provided by the food itself (internal, organic juices that will diffuse through a permissive membrane and connect the two electrodes).
The novelty of this project is the incorporation of an interdigitized sensor, laser-printed on a cheap, flexible polymer, combined with a micro-RFID device and an incorporated self-sustainable battery for use if food industry and quality control.
Read more
Multiplexed platform for HPV genotyping – MultiplexGen
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1434
2014
-
2017
Role in this project:
Project coordinator
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); GENETIC LAB S.R.L. (RO); UNIVERSITATEA BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.imt.ro/multiplexgen/index.php
Abstract:
MultiplexGen project addresses a current problem in medical diagnosis, detection in an accurate and specific way of Human papillomavirus (HPV) and sets out to explore specific solutions from micro- nanotechnology to overcome the limitations of the conventional tests, which are not quantitative and exclude multiplexing. The aim of the project is to develop a high sensitivity multiplexed platform which consists of different functional levels, and as a consequence is generic named “multilevel system”. It is based on hybrid organic-inorganic / bio-nonbiological assemblies able to enhance diagnostic capabilities by exploiting the bridge between bio-systems and micro-nanotechnologies, thus overcoming many of the limitations of the existing methods for Human papillomavirus (HPV) detection and genotyping.
This proposal has evolve as a result of numerous discussions initiated by researchers from the clinical laboratory - SME – GeneticLab with their colleagues from Laboratory of Nanobiotechnology - IMT (LN-IMT) about various specific issues they encountered in their activity related to HPV genotyping by capillary electrophoresis kit, which are identified as primary technical and scientific barriers that will be lifted by carrying out the present project. The long time collaboration encouraged them to believe that IMT will find a technological answer to the problem posed by the classical diagnosis method, and furthermore, Centre of Applied and Organic Chemistry - UB (CAOC) will provide a theoretical understanding of the processes and phenomena taking place in HPV genotyping.
The issues supposed to be solved related to the mentioned thematic area, which represents the secondary objectives of the project, are encompassing the fundamental and technological knowledge and are parts of our functional model demonstration, as following: (i) to obtain a microarray based technology for accurate HPV genotyping; (ii) to improve the up to now reported results in terms of sensitivity / selectivity by connecting the biochip to a microfluidic system; (iii) to indicate the optimum design for biochip to allow parallel detection and in this way confirmation of results; (iv) to propose a heterogeneous technology for integration and 3D packaging and correpondingly a functional hybrid assembly of all these modules for a further disposable system developing.
Therefore, an extensive investigation and optimization of the benefits that our knowledge in genetics, microfluidic technology, microarray technology, surface biofunctionalization, as well as opto-electrical read-out signal analyses are able to bring a valuable tool to a medical diagnostic laboratory, a chip class of devices, with important specific HPV detection / genotyping application. For example, combining the fields of microfluidics and DNA microarrays, the advantages of both directions can be exploited simultaneously, mediated by valuable new knowledge about biointeractions and biohybrid assembling.
Besides the envisaged final outcome of this project, the functional model of hybrid multilevel system for HPV genotyping, the modules and even more, each specific technology improvement are of high value by themselves each of them being independently used thenceforth. State-of-the-art scientific results in all of the disciplines involved will be the direct project outcomes, which will be proven by the publications on microfluidics, on-chip sample preparation, and on clinical comparison of HPV detection technologies in international journals and at international conferences.
Read more
Identification of new modulators of calcium-regulated processes using genomic and chemogenomic screens in yeast
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0291
2014
-
2017
Role in this project:
Key expert
Coordinating institution:
UNIVERSITATEA BUCURESTI
Project partners:
UNIVERSITATEA BUCURESTI (RO); INSTITUTUL DE BIOCHIMIE (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); APEL LASER S.R.L. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.calchemgen.ro/
Abstract:
Calcium ions are used by virtually all eukaryotic cells to signal information about the environment and the physiological state of the cell, or to regulate various cellular processes such as initiation of gene expression, alterations in cell shape, membrane fusion, or programmed cell death. Excessive or unregulated levels of calcium induce a variety of drastic defects, such as uncontrolled cell proliferation, aberrant cell morphology, or cell death, leading to disruption of normal metabolism and initiation of various diseases. The versatility of calcium-mediated regulation of key physiological processes requires extensive research to identify the interplay between calcium signaling, mechanisms of diseases and discovery of new drugs.
The aim of this project is to utilize Saccharomyces cerevisiae cells to unravel new insights into the calcium-regulated cell mechanisms and to investigate the applicability of in house newly-synthesized chemicals as novel therapeutic and imaging agents, selected through interactions with the calcium-dependent pathway components. The budding yeast Saccharomyces cerevisiae is a unicellular eukaryotic organism extensively used for the study of conserved processes and for getting information that can be further extrapolated to complex organisms like humans. The current proposal was initiated by highly-promising preliminary results obtained in the laboratories of the coordinating group. These results are based on novel and spectacular cell modifications which mimic aberrations in fundamental processes such as cell shape, cell polarity, and cell proliferation, representing the center of a complex network of research which will be established by the project.
The project will imply systemic investigations such as genomic profilings paralleled by chemo-genomic screens designed to identify new interactions between small molecules and calcium-related biologic processes. The proposed work will provide an unprecedented coverage on structure-function information, facilitating the analysis of synergistic and antagonistic interactions between molecular components of calcium-related metabolism. The project is multidisciplinary, involving a plethora of aspects related to cell and molecular biology, genetics, chemical synthesis and analysis, high-throughput screening, bioinformatics and imaging.
This project will be carried out by a consortium of four partner groups with relevant research and innovation expertise: University of Bucharest (as coordinating organization, CO), Institute of Biochemistry of the Romanian Academy (Partner P1), National Institute of Research and Development for Microtechnology (Partner P2), and a small enterprise, Apel Laser (Partner P3). The consortium was established based on the state-of-the-art infrastructure already existent in the implementing institutions and on the strong complementarities between the research and market expertise of the partner groups.
Read more
Improved production methods to minimize metallic nanoparticles’ toxicity – less classic, more green
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1780
2014
-
2017
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); AGHORAS INVENT SRL (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.imt.ro/lesmorenano/
Abstract:
The demand for engineered nanoparticles (ENPs) comes from the great promise for major advances in different areas of applications, practically all fields of knowledge being in some way or another related with nanomaterials. Among the different kinds of ENPs, the special properties of metallic NPs (MeNPs) make them attractive for most of the domains, from opto-electronic industry to biomedicine. As a result of these applications, MeNPs exposure to the environment and humans is becoming increasingly widespread.
The present proposal lies in this very context of the nanotoxicology, and it has taken shape as a result of numerous discussions initiated by researchers from a small enterprise which develop and put on the market novel cosmetic products based on different types of nanoparticles – Aghoras Invent SRL – and consequently has a direct interest in analyzing their potential adverse effects.
The aim of this project is to provide a better understanding of MeNPs safety and a basis for health and risk assessment. Consequently, an intensive work on hazard characterization and impact assessment of selected nanoparticles and economically relevant products is proposed. In this context, the end-of-project results will be: (i) as technological development, from experimental point of view, different sizes/shapes of Au, Ag and PtNPs, relevant for skin care products’ development, will be obtained using both, conventional chemical reduction and eco-friendly methods. Stable and homogenous metallic nanoparticle colloidal dispersions with specific size ranges are aimed, using eco-friendly processes and the chemical reduction routes; appropriated surface functionalization will be also realized, since it provides stability, solubility and retention of optical properties in various media; (ii) as a nanoparticle properties’ study, advanced equipments for analytical characterization will be used and also, the up to date nanotoxicology specific in vitro tests will be used to accomplish the final proposed objective of this project, giving a strong support for a correct decision. Furthermore, this project aims to extend the use of existing ‚state of the art’ methods.
In summary, this project addresses: ¤ increased concern of national and international regulatory organizations; ¤ reticence of companies and manufacturers of developing NP based products and technologies in absence of clear safety standards; ¤ nanotoxicology emerging research field; ¤ assessing NP toxicology an extreme complex research effort due to a large multitude of NP variables; ¤ imperative necessity to find effective countermeasures to the potential hazards represented by NPs; ¤ green synthesis as a route for diminishing / elimination of NP adverse effects on health and environment.
It will provide our contribution to the common efforts of research community offering answers about the potential toxicological effects of three classes on MeNPs and also proposing fabrication alternative, to minimize the negative consequences as greener pathways to nanoproducts.
Read more
Array structures for prevention, individualized diagnosis and treatment in cancers with high risk of incidence and mortality
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 1
PN-II-PT-PCCA-2011-3.1-0803
2012
-
2016
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL ONCOLOGIC PROF.DR.ALEXANDRU TRESTIOREANU BUCURESTI
Project partners:
INSTITUTUL ONCOLOGIC PROF.DR.ALEXANDRU TRESTIOREANU BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA DE STIINTE AGRONOMICE SI MEDICINA VETERINARA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.iob.ro/proiectepniv.html
Abstract:
Cancer is a worldwide health problem and represents a major public health challenge as it is responsible for 25% of all deaths, being the second most common cause of death after cardio-vascular diseases. In considerations of these peculiarities and of the socio-economic impact of the expected rise of cancer, it appears of priority importance to address the prevention, diagnosis and therapy of this disease more effectively. One of the main directions currently pursued for increasing the proportion of positive responses in the treatment of cancer is the attempt to individualize treatment. Investigation of gene expression profiling is a relatively new methodology for characterization of cancer at the molecular level which tends to be a very useful tool because of its potential to improve clinical management of disease. Very surprising in a way, if the knowledge on molecular aspects of human cancer strongly developed in the last 20 – 30 years, much less data exist in respect to animal cancers, yet this one tends to become an important problem, especially for pets.
The main objectives of the project are designing, fabrication, tests and validation of array structures that could be used to details molecular / genetic particularities of two major forms of cancer: breast cancer, and colon cancer, in order to develop new tools for cancer prevention, and for an individualized ways of diagnosis, treatment and prognostic, both in humans and animals. Interest genes will be RAS, for breast cancer (humans and animals) and colon cancer (humans), and BRCA, for breast cancer, in humans and animals and for cancer prevention. Other expected achievements will be: contribution to existing data on molecular characteristics of cancer; comparative studies between humans and animals referring to cancer genes expression; translation of the results in human and animal clinics; identification of risk groups for breast cancer.
Read more
Environmental toxic and flammable gas detector based on silicon carbide MOS sensor array
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-0566
2012
-
2016
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU INGINERIE ELECTRICA ICPE - CA BUCURESTI
Project partners:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU INGINERIE ELECTRICA ICPE - CA BUCURESTI (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); CEPROCIM S.A. (RO); INTERNET S.R.L. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.icpe-ca.ro
Abstract:
The objective of project is to produce for Security Domain, for detection and identification of dangerous gases (factors generating of crisis), an environmental toxic and flammable gases detector based on MOS capacitor gas sensor array. The gases of interest detected by our detector are: H2, CH4, CO, NO2, and SO2. MOS sensor on silicon carbide (SiC) is well suited for such application, because has high selectivity and sensitivity, fast response, short recovery time and low power consumption. Our sensor works in high temperature and harsh environment applications. Several innovative material and structures will be developed that will increase the performances of the present MOSiC sensors. Every structure will be highly sensitive to a certain type of gas. Structures with different characteristics will be integrated in an array in order to increase the range of gases that can be detected precisely. A drive circuit will be developed. Its purpose is to measure the output of the gas sensor and transmit it to a PC. On the PC a custom software application will be developed. This application receives the measured values from the drive circuit and analyzes them in order to determine the concentration and type of the detected gas. The sensors and drive circuit will first be designed and simulated. Then the SiC MOS structures will be characterized using a semiconductor characterization system and a controlled environment chamber. Characteristics will be plotted for all the structures in different gas mixtures environments. Sensors and the drive circuits will be fabricated and the custom software application will be developed. The prototype will be tested in the controlled chamber and in real applications to cement factory and the adjustment will be performed.
Read more
High Temperature Silicon Carbide (SiC) Smart Sensor for Harsh Environment Industrial Applications
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-0487
2012
-
2016
Role in this project:
Key expert
Coordinating institution:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Project partners:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU INGINERIE ELECTRICA ICPE - CA BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); CEPROCIM S.A. (RO); HEIDELBERGCEMENT ROMÂNIA S.A. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://dcae.pub.ro/projects/sicset/
Abstract:
The typical lifetime of a temperature sensor used in the cement industry is only three months due to the highly corrosive agents, vibration levels and thermal stress.
The project goal is to produce an industrial temperature smart sensor based on silicon carbide (SiC) diodes for usage in cement fabrication heaters, operating in the 20-400C range. The P4 partner, a well-known cement producer, is highly interested to use this high life time sensor in control equipments.
The chemical inertness in many media, even at elevated temperatures, make the SiC’s Schottky diodes suitable as temperature sensor.
SiC electronic devices have small capability to work in hostile environments at high temperatures if they cannot be reliably packaged and connected to form a system capable to withstand harsh environment conditions. As a result, package of high temperature sensors form factors can be considerably different from standard packages. A full electrically isolated package is designed and implemented.
The temperature smart sensor is based on SiC diodes sensor and a processing circuit(with amplifier and excitation scheme). The output voltage of this circuit is changed in a current using a converter. A linear dependence between measured temperature on SiC diode and 4-20mA output current is proved for whole temperature range. The sensor operates inside the furnace. For improving the noise robustness a specific probe to electrically connect the sensor to the processing circuit is designed and proved. The sensor will be calibrated in a cement factory. The temperature smart sensor based on SiC diodes is a premiere for Romania industry.
The original contributions of the project will be patented and published in ISI journals and will be also presented in SiC conferences. The experience and scientific results of each partner of the consortium (with specialists from all relevant communities: academia, research institutes and industry), are guarantees for the success of the project
Read more
Efficient electrochemical catalysis and regeneration of nicotinamide adenine dinucleotide at layer-by-layer self-assembled doped membranes
Call name:
Projects for Young Research Teams - TE-2010 call
PN-II-RU-TE-2010-0044
2010
-
2013
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU MICROTEHNOLOGIE DIN BUCURESTI
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU MICROTEHNOLOGIE DIN BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU MICROTEHNOLOGIE DIN BUCURESTI (RO)
Project website:
http://www.imt.ro/NADH/
Abstract:
The need for an efficient catalysis and regeneration process involving the nicotinamide adenine dinucleotide is justified, by its economical weight as well as by its valuable applications in the biotechnology field. Nanostructured materials exhibit interesting properties which favour the electrochemical detection of NADH. Obstacles for the effective use of nicotinamide adenine dinucleotide include the need of high overpotentials for direct oxidation or reduction of the cofactor, electrode fouling, dimerization of the cofactor, etc. Nevertheless, to promote economically efficient processes, the regeneration of the pyridine cofactor remains a key problem to solve. A platform for various dehydrogenase based bioassays should be obtained by developing an electrochemical probe based on layer-by-layer self-assembled doped metallic nanoparticles membranes. When using nanoparticles for catalysis two main issues are raising: the stabilization the particles while retaining sufficient catalytic activity and the problematic separation of the catalytic particles from the reaction product and unused reactants at the end of the reaction. One solution may be the immobilization of the nanoparticles in thin membranes, minimizing the mass transfer limitations. A generic platform offering a fast regeneration and an efficient catalysis of coenzyme is the goal of this proposal. The motivation, the goals, the team and the methodology are fully described in this research proposal.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.544, O: 530]