Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
2007
Mrs.
Marinela
Miclau
CS I Dr.
Researcher
-
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA
Researcher
18
years
Web of Science ResearcherID:
not public
Personal public profile link.
Curriculum Vitae (28/06/2024)
Expertise & keywords
Synthesis methods
Material characterization
Solar cells
new materials
oxides
Nanomaterials
Green energy
new materials
Sensors
Li-Batteries
piezoelectric ceramics
Single crystals
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Optoelectronic neural network based on dye-sensitized solar cells for zero electric power consumption
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2021-0624
2022
-
2024
Role in this project:
Project coordinator
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO); UNIVERSITATEA POLITEHNICA TIMIŞOARA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO)
Project website:
https://incemc.ro/MM/728PED_2022/start.html
Abstract:
For the first time worldwide, AIDSSC project proposes to develop and validate an optoelectronic neural network prototype based on dye-sensitized solar cells for zero electric power consumption in the outdoor and indoor lighting conditions. The European Green Deal 2021 proposes ambitious environmental goals which require a green transformation of many sectors of society, in especially a sustainable development of urban areas, “smart city”, being a challenge of key importance. The transformative potential of artificial intelligence (AI) to contribute to the achievement of the goals of a green transition have been increasingly and prominently highlighted. At the same time, digital technologies such as AI considerably increase energy and resource consumption and create risks of adverse environmental effects. In this context, the solar cells open a new perspective as the most suitable candidate for zero electric power consumption. The dye-sensitized solar cell (DSSC) has the essential characteristics that could make these cells the ideal candidate for artificial intelligence system with zero electric power consumption. A singular preliminary proof of the DSSCs’ learning capabilities was highlighted by Gratzel, the inventor of DSSC, using the exposure time as a cue for learning under 1 sun-simulated conditions. This new perspective for AI devices which are the optically learning solar cells, have the potential to serve as building blocks for intelligent optoelectronics enabling visually interacting machines that operate at minimal power and zero electric power consumption, in both outdoor and indoor lighting conditions.
In this context, AIDSSC project aims to demonstrate that the optoelectronic neural network working prototype based on dye-sensitized solar cells is a technically and economically credible concept for the artificial intelligence devices.
Read more
Wavelength-selective Greenhouse 4.1– Towards Energy Independent and Combined Fully Automated Arboretum
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-2091
2020
-
2022
Role in this project:
Project coordinator
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO); UNIVERSITATEA POLITEHNICA TIMIŞOARA (RO); SYMPH ELECTRONICS SRL (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO)
Project website:
http://getica.upt.ro
Abstract:
For the first time, GETICA project proposes to develop and validate an energy independent and combined fully automated greenhouse standalone prototype based on dye sensitized solar cells (DSSCs), as an ongoing and complementary research of the project team. As an important part of Agriculture 4.0 strategy, agrivoltaics can achieve synergistic benefits by growing agricultural plants under raised solar panels. The main limitations of the integration in greenhouse concern the fact that classical PV cells do not transmit sunlight and form a permanent shadow region which has negative effects on production, reducing the crop growth or the amount of biomass. Simple manufacturing process, the low fabrication cost, flexibility in scaling, low material usage and low light level sensitivity, but mainly the variation in color and transparency of the dye sensitized solar cell (DSSC), one of the third generation of PV cells, are essential characteristics that could make these cells the ideal candidate for greenhouse application. To our knowledge (as far as we are aware), no DSSC has been applied in greenhouse for plant growth and energy saving worldwide. We propose the solar radiation manipulation using DSSCs based on UV dye for the protection cells and DNA from damaging UV radiation as well as scavenge free radicals, preventing further cellular damage or IR dye for reducing the temperature of the greenhouse air which leads to an increase in crop production. Moreover, it will be sought reducing production cost of the greenhouse using 3D printing of the modular roofs and DSSCs based on the natural dyes and a low-cost maintenance given by near zero energy input from conventional sources and decreasing the water consumption in irrigation. In this context, GETICA project aims to demonstrate the economic sustainability of this smart greenhouse based on DSSC in the real agriculture.
Read more
Development of advanced platforms for the analysis and modeling of complex biological systems
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0046
2018
-
2021
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO); INSTITUTUL DE BIOCHIMIE (RO); UNIVERSITATEA DE STIINTE AGRICOLE SI MEDICINA VETERINARA CLUJ-NAPOCA (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE CHIMICO - FARMACEUTICA - I.C.C.F. BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO)
Project website:
https://www.incemc.ro/index.php?page=AZ/PN-III-P1-1.2-PCCDI-2017-0046.html
Abstract:
The complex project 'Development of advanced platforms for the analysis and modeling of complex biological systems' (TEHNOBIOSIST) coordinated by INCEMC Timisoara, in collaboration with IBAR Bucuresti, USAMV Cluj-Napoca and ICCF Bucuresti consists of 3 projects with the following objectives: 1. designing and functionalization of a bioanalytical platform in multiplex system for microfluidics-mass spectrometry coupling and its applications in modern glycoproteomics; 2. development of proteomic methods employing microfluidic and bioinformatic technologies for pharmacological assays; 3. implementation of these advanced systems for authenticity and quality assessment of Romanian vegetal oils.
The platforms designed within TEHNOBIOSIST will provide a major technical-economical and bioeconomical input derived from: i) complete automatization; ii) reducing the working time, sample consumption and analysis costs; iii) increase in the reproducibility, sensitivity of the experiment and accuracy of generated data; iv) development and updating of the existing databases with the newly identified biomarkers.
By the foreseen results, TEHNOBIOSIST has a marked bioeconomical impact: innovation in the analytical field which will enhance a thorough study of complex biological systems; hiring of young researchers; reorganization of R&D national system on modern and high performance bases; innovation, development and upgrading of the research infrastructure existing at the institutions involved in the project and last, but not least, providing (after patenting/publication) the pharmaceutical companies, the analytical system producers, bioclinical laboratories and the economical agents in charge with the control of food product quality with new and efficient techniques, optimized for a broad range of analyses and of new scientific results based on which they can focus their activity, their own research and production in the sense of improving the quality of life and products in Romania.
Read more
Celule solare sensibilizate cu coloranti cu eficienta ridicata si costuri scazute pe baza de cupru
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2016-0526
2017
-
2018
Role in this project:
Project coordinator
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO)
Project website:
https://www.incemc.ro/C_71_PED/start.html
Abstract:
In the context of the energy crisis, the project is aimed to design, build, test and implementation of highly efficient and low-cost p-type dye-sensitized solar cell (DSSC) standalone prototyping based only on copper, as a technically and economically credible alternative concept to present day conventional p–n junction photovoltaic devices. Until recently, much of the research has been focused on n-type DSSCs. Comparatively few studies have examined a p-type DSSCs, even if the study of this cell is important both to understand the factors that control the conversion efficiencies and to aid the rational design of efficient DSSC.
For first time, the HELC DSC project proposes the implementation of new concept for p-type DSSCs, highly efficient and low-cost p-type dye-sensitized solar cells based on copper oxide (Cu2O and CuO) for both electrodes, photocathode (using copper foil as flexible substrate and copper oxide thin film) and counter electrode (copper oxide thin film on FTO).
Based on our experience (experimental and theoretical results) accumulated in p-DSSC domain, the concept proposed by the HELC DSC project was building on the solutions aims to accomplish 2 main characteristics of p-DSSC: (i) low-cost production by using Cu and Cu2O/CuO for photocathode, replacing Pt with copper oxide for counter-electrode, the use of the hydrothermal method for the synthesis of both electrodes, low-cost dye and electrolyte; (ii) highly efficienciences by maximizing the short circuit photocurrent density (JSC>7 mA/cm2), the open-circuit photovoltage (VOC >400mV) and the fill factor (ff >0.4).
The HELC DSC project will provide the highly efficient and low-cost p-type DSSC prototyping as an alternative economic for market implementation and the new solution for development of the tandem DSSCs.
Read more
Highly efficient photocathodes for dye-sensitized tandem solar cells based on nanocrystalline delafossite materials.
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-1142
2015
-
2017
Role in this project:
Project coordinator
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO)
Project website:
http://www.incemc.ro/pag_marinela_proiect/start.html
Abstract:
The alternatives to conventional silicon-based solar cells, dye-sensitized solar cells (DSSCs) attract great research interests because of low manufacturing cost and environmentally friendly character. Recently, Grätzel and coworkers have achieved a world record efficiency of 12.3% based on porphyrin dye sensitized TiO2 n-type DSSC.
However, the commercialization of DSSCs is still being postponed by their relatively lower efficiency. To further improve the energy conversion efficiency of DSSC up to 15% is of critical importance for the scale-up industrial application of this cheap and environmental friendly photovoltaic technology. Recently, the idea of tandem-DSSCs, with a theoretical photon to energy conversion efficiency (PCE) over 40%, has been raised.
TANDEL CELL project is aimed to obtain highly efficient photocathodes for dye-sensitized tandem solar cells based on nanocrystalline delafossite materials and the establishment of young independent research team in highly efficient dye-sensitized solar cells domain.
Read more
Mobile pilot plant for wastewater treatment using solar energy
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1708
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO); UNIVERSITATEA POLITEHNICA TIMIŞOARA (RO); INSTITUTUL DE CHIMIE (RO); BEESPEED AUTOMATIZARI SRL (RO); CLUSTERUL DE ENERGII SUSTENABILE DIN ROMANIA ROSENC/ROMANIAN SUSTAINABLE ENERGY CLUSTER ROSENC - ASOCIATIE (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO)
Project website:
http://solwatclean.incemc.ro/
Abstract:
Project Title: Mobile pilot plant for wastewater treatment using solar energy - SOLWATCLEAN
General objective: design and construction of a Modular Mobile Pilot Plant (MMPP) for wastewater treatment using solar energy.
Specific objectives:
1. Improving energy efficiency of wastewater treatment by electrocoagulation (EC) process, with the recovery of hydrogen (H2) produced at the cathode and its valorization (electricity production with H2-air fuel cell).
2. H2 production by photocatalysis using solar energy. Resulted H2 will be used in the fuel cell for electricity generation.
3. Generation of electricity directly from sunlight (photovoltaic).
4. Electricity storage (obtained from H2 in fuel cell and photovoltaics) and its use in EC process.
5. Modular design and construction on a mobile platform of MMPP which will include:
• module for EC treatment with hydrogen recovery;
• module for H2 production by photocatalysis using sunlight;
• module for H2 (resulted from electrocoagulation and photocatalysis) valorization into electricity (fuel cell)
• module for direct electricity production by solar energy (photovoltaic)
• module for power supply and storage,
• mechanical and electrical connections between modules, automation.
Implementation: Consortium of five institutions (three research organizations, one SME with R&D activities and one NGO).
The project final products will be:
1. MMPP for water purification using EC process with recovery of hydrogen produced in the process and use of sunlight to increase efficiency.
2. Prototype system of capture and use of sunlight for:
a) hydrogen production by photocatalysis;
b) electrical energy production (photovoltaic);
3. Innovative service for determining the optimal parameters of wastewater treatment by EC technique using the MMPP, transportable to the beneficiary site.
Measurable criteria for success:
• Decrease by more than 85% of suspended solids and turbidity in wastewater by using EC process for treatment.
• Recovery of more than 90% of the H2 produced at the cathode of EC cell and its oxidation of in a fuel cell with getting a part of electricity needed to run the EC cell.
• Publication of at least 2 scientific papers in ISI journals with a cumulative impact factor of minimum 2, the submission of at least one patent application and development of at least one dissertation that use part of the project research results.
Sustenability of the proposed technology:
- The project promotes clean energy technologies, environmental protection measures and reduction of greenhouse gases emissions.
- The processes proposed to be realized in the project are sustainable (using solar energy, the recovery and use of H2 wastes.
Expressed interests for application of project results on the market:
1. The company co-financing the project intends to develop this type of facility for the market after IPMM functional model constructed in the project will be effective.
2. There is interest in the SOLWATCLEAN project results from Romanian textile industry potential beneficiaries (3 letters of intent attached to "other documents").
Read more
DEVELOPMENT OF MULTIPLE AND SELECTIVE SENSOR FOR DETECTION OF REPRESENTATIVES EXPLOSIVES
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0474
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO); Academia Tehnica Militara (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); MIRA TELECOM S.R.L. (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO)
Project website:
http://sensorex.incemc.ro/
Abstract:
Globalization of terrorism became a reality that can not be disputed, a threat to national and international security and, thus, a phenomenon under the responsibility of the entire international community. Terrorist threat, theatres of operations with explosive traps everywhere, with the possibility of using biological weapons of various viruses, drugs, etc are a constant threat to the civilian population, unwittingly victim of varied interests. It is an ongoing concern of many laboratories in the world to detect traces of explosives in the atmosphere, in order to minimize the risks arising from them. To avoid or prevent serious incidents that could endanger people's lives, EU adopted new security rules. These rules apply to security checkpoints at airports, the senior public institutions, in the cultural and artistic events with massive participation, etc. However, there are situations in which all efforts to prevent terrorist acts are not sufficiently effective, creating holes that are exploited by potential attackers. Therefore, rapid detection of explosive compounds is of great interest given the need to prevent any human casualties and material damages caused by their use in different ways and for destructive purposes. The principle SENSOREX will bring an additional performance in the field of detection devices for dangerous substances with the low response time, high specificity, greater functionality and last but not least a low production price. Practical relevance of the project subject is to develop innovative products and manufacturing processes that underlie the development of sensitive, selective, reliable and low cost sensors detection of explosives. Appearance is very important from the perspective of efficient procedures for prevention of terrorism threats by using them in areas where existing equipment besides being very expensive, are almost impossible to use due to ergonomic aspects, reducing processing time suspicious persons and packages various strategic points and last but not least reduce additional costs. The main objective of SENSOREX project is to develop through this national partnership, a sensor with high sensitivity detection of explosives traces . Implementation status of this sensitive platform will be a sensor – demonstrator model tested and calibrated with low response time, high sensitivity and specificity, easy to use and interpreted by a non-specialist user and not least a low cost. Progresses that SENSOREX project brings through its results are: innovative methodologies for obtaining titanium dioxide films and molecularly imprinted polymers; creating scientific premises for serial production of a device with high sensitivity to reduce the most important barriers to personal and group security; final product of the project, sensor – demonstrator model, by its future implementation in production strategy of the private company, partner in this project, it will cover a hole on external and internal market of the profile products.
Read more
Interactomics of galactosaminoglycans in the extracellular matrix by advanced mass spectrometry
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0191
2014
-
2017
Role in this project:
Coordinating institution:
UNIVERSITATEA AUREL VLAICU ARAD
Project partners:
UNIVERSITATEA AUREL VLAICU ARAD (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO); CROMATEC PLUS SRL (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO)
Project website:
http://uav.ro/ro/cercetare/proiecte-in-desfasurare/pn-ii-pt-pcca-2013-4-0191
Abstract:
Proteoglycans are heavily glycosylated proteins, covalently linked to one or more glycosaminoglycan (GAG) chains, which are abundantly expressed in the extracellular matrix. At this level, proteoglycans play a key biological role, being implicated in a variety of physiological and pathological processes. There are strong evidences that chondroitin/dermatan sulfate (CS/DS) type of GAGs regulate angiogenesis and melanoma cell invasion and proliferation, most probably through their functional interactions. Among proteoglycans, biglycan is one of the most intriguing and highly versatile species being equipped with recognition markers both on the two encompassed CS/DS chains and on the protein moiety. Unlike the case of heparin and heparan sulfate type of GAGs, recognized as interacting with fibroblast growth factors (FGF), much less is known on the potentially active domains of CS/DS and almost nothing for the case of biglycan-derived chains. Moreover, the knowledge on the nature of FGF-2 binding domain within CS/DS, the core protein from which the interacting CS/DS derive and of the bound sequence in FGF-2 is at present solely at the level of speculation.
In view of this state-of-art, within ANCS/UEFISCDI PCCA 2013 call, priority field 4 Health, thematic area 4.1.3 Investigation and Intervention Methods Based on Molecular and Cellular Medicine, Genomics and Proteomics we proposed here a transdisciplinary project connecting molecular medicine, glycomics, glycoproteomics, advanced high resolution and microfluidics-based electrospray (ESI) mass spectrometry (MS), nanotechnology and bioinformatics for the determination of functional GAG interactomics. Within the project, biglycan released CS/DS chains will be depolymerized using specific lyases and subsequently purified. The resulting oligosaccharide mixture will be thoroughly characterized by advanced MS techniques in terms of epimerization, repeating dissacharide structure and sulfation pattern i.e. number of sulfate groups and their precise location along the chain and within the sugar ring. The CS/DS mixture will be subjected to noncovalent interactions with FGF-2. The interaction dynamics and the formed noncovalent complexes will be assessed by two high performance MS methods to be used complementarily: fully automated chip-based nanoESI high capacity ion trap (HCT) MS and a high resolution instrument, quadrupole time-of-flight (QTOF) MS. The structural analysis of the formed complexes will be achieved by top-down complex fragmentation by collision-induced dissociations (CID) and electron transfer dissociation (ETD). Data on the structure and sulfation pattern of the bound CS/DS motifs as well as of the protein sequence participating in the interaction will be collected. To enhance the ionization of the intact complexes a novel nanoESI ion source will be developed and applied within the project life-time to CS/DS, FGF-2 and CS/DS-FGF-2 complex analysis. The bioinformatics tools, including a novel computer software for automatic assignment of CS/DS and CS/DS-FGF-2 mass spectra and a database of all structures and active domains identified, will complete the analytical platform developed in the present project.
From the practical point of view the project contribution to the field progress resides in the introduction of original concepts and innovative approaches in GAG interactomics, which are adaptable also to other carbohydrate categories and relevant to various studies in molecular medicine. Further refinement of the methodologies conceived and optimized here, for routine applicability in early diagnosis of malignant transformations as well as for development of drugs able to inhibit detrimental carbohydrate-protein interactions, are clearly envisaged.
Read more
Spin and Orbital Physics : Research of Advanced New Oxides
Call name:
EC-FP7
FP7-87682-214040
2008
-
2012
Role in this project:
Partner team leader
Coordinating institution:
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Project partners:
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS (FR); UNIVERSIDAD COMPLUTENSE DE MADRID (ES); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU ELECTROCHIMIE SI MATERIE CONDENSATA - INCEMC TIMISOARA (RO); UNIVERSITAT ZU KOLN (DE); THE UNIVERSITY OF LIVERPOOL (GB); NXP Semiconductors France (FR); MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV (DE)
Affiliation:
Project website:
Abstract:
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.3554, O: 256]