Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
2017
Liliana-Marinela
Balescu
Doctor
-
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Researcher
Scientific researcher rank III (since 2022), born in 1988, graduated the Faculty of Applied Chemistry and Materials Science (FCASM) – Section “Polymers Science and Engineering” at University Politehnica of Bucharest (UPB) (2011), has a MSc degree in Chemical Engineering − Section “Polymers Science and Engineering” (UPB) (2013), and a PhD degree in Physics − Section “Condensed Matter Physics” (UB) (2017). Work experience: National Institute of Materials Physics (NIMP) (2011 – to date); work and study stages at the University of Twente – Netherlands; Technical University of Denmark. Main areas of interest/expertise: physical vapor deposition processes (pulsed laser deposition, magnetron sputtering) for thin films, complex multifunctional heterostructures fabrication; chemical synthesis of inorganic, macromolecular or organic materials, non - invasive characterization of materials (x-ray diffraction, atomic force microscopy, ellipsometry, infrared spectroscopy).
Web of Science ResearcherID:
not public
Personal public profile link.
Curriculum Vitae (21/03/2023)
Expertise & keywords
Applied physics
solid state physics
Materials science
solid state physics
Growth of epitaxial thin films and nanostructures with pulsed lasers
Ferroelectrics
Oxide materials
Oxide materials
Polymers
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Towards perovskite large area photovoltaics
Call name:
EEA Grants - Proiecte Colaborative de Cercetare
EEA-RO-NO-2018-0106
2021
-
2024
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); University of Oslo (NO); Reykjavík University (IS); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH (RO); TRITECH GROUP SRL (RO)
Affiliation:
Project website:
http://perla-pv.ro/
Abstract:
The perovskite solar cells (PSC) have attracted a considerable interest in photovoltaics community, showing a very fast development in terms of power conversion efficiency (PCE), reaching now values over 25% certified PCE in not stabilized small area samples, proving that they can become real competitors to commonly used solar-cell materials (e.g based on Si). Not only the remarkably large PCE is an important asset, but also the low production costs makes the PSCs very attractive for the solar cell technology, as solution processing techniques are typically employed. In addition, they can be hosted by a long range of flexible substrates, pushing further the record for power per weight and implicitly their utility. However, while the high PCE values and the low production costs are important advantages for PSC, the real challenges to overcome prior of industrial production are their stability in time, reliability and reproducibility of the performance as well as environmental issues raised by the use of toxic elements/solvents. These are well known problems for the small area standard and inverted PSCs, produced by spin-coating in research laboratories and inherently remain the same when envisaged is the fabrication of large area devices. The project addresses these issues starting from the premise that coherent experimental and theoretical studies should be done using from the start cheap deposition techniques applicable on large areas (printing and sputtering). Beside allowing the scaling up, such techniques can be better controlled offering a better homogeneity in deposition than the spin-coating method. The present project includes fundamental and applicative research aiming to achieve both scientific and practical goals. The overall aims/objectives of the project are: A) to develop efficient, stable, reproducible standard and inverted perovskite solar cells and photovoltaic modules fabricated with affordable large area and environmental friendly technologies. It is expected that by developing low cost and stable photovoltaic panels with optimized efficiency the use of such devices in public and private buildings will be boosted, contributing thus to increasing the share of renewable energy in energy balance in Romania and Donor States; B) to strengthen the knowledge base concerning the application of environmental technology; new knowledge will be acquired regarding how PSCs can be optimized for large scale applications and how can they be fabricated using environmentally friendly technologies with low carbon footprint. Specific objectives to be achieved during the project are: O1 - understand the physical working principles of perovskite solar cells and find solutions to increase and stabilize the PCE while enlarging the area of the cells; O2 – reduce the amount of costly materials and toxic solvents used in the fabrication process of both standard and inverted PSC structures with other inexpensive and environmental friendly; O3 - stabilize the PCE performance of PSC via compositional engineering and proper replacements including the selective contacts; O4 - enhance the charge collection efficiency by optimizing interfaces between the layers in the cell; O5 - develop cheap large area fabrication technologies (printing and sputtering) for all the component layers in PSCs, standard and inverted structures; O6 - obtain efficient large area encapsulated PSCs and photovoltaic modules with PCE over 15%. The starting TRL is 3 and the envisaged TRL is 6, meaning that fully operational photovoltaic modules will be manufactured and tested in relevant industrial environment with the help of the SME partner.
The consortium is composed by 5 partners: National Institute of Materials Physics (NIMP), Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), and Tritech Group (WATTROM), a SME as end-user, all from Romania; Oslo University (UiO) from Norway, and Reykjavik University (RU) from Iceland.
Read more
3D direct ink writing (robocasting) of bioceramic porous scaffolds: towards a new generation of bone graft substitutes
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-0463
2021
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://infim.ro/en/project/robonegraft/
Abstract:
Bone transplantation demand stems from tissue deficiency or a substantial skeletal loss, and has multiple causes: age, severe trauma, chronical bone disorders/infections, tumor resections, congenital bone defects. Bone grafting evolved in the last decade into a distinct biomedical segment, which will continuously expand. Responding to this necessity, the project proposal aims to delineate series of innovative architectural solutions of porous bone graft substitutes (BGSs) to be fabricated by accessible and performant 3D robocasting technologies, from bioactive and/or piezoelectric ceramics. Their functional performance will be assessed to prospect their potential for developing a new generation of BGSs capable to satisfy the mechanical and biological requirements of both trabecular and the more demanding cortical bone regions. New routes for endowing angiogenesis, osteogenesis and antibacterial capabilities to both the bioactive and piezoceramic BGSs, such as to enable their rapid, safe and long-lasting osseointegration, will be explored and implemented. Not least the proposal will tackle another highly important issue: the lack of standard in vitro protocols for uniform cell seeding of porous scaffolds.
Innovative and original fundamental and technological elements are expected to emerge: (a) design of bioactive ceramics with controlled degradability and therapeutic ion release, (b) coupling of mechanical strong piezoelectric ceramics with biofunctional materials and (c) in vitro testing of piezoelectric effect on cells behavior under dynamical mechanical stress conditions. The project will lead to the creation of an independent research team of young scientists with complementary skills, and strive to (i) attract human resources in the national research; (ii) create opportunities of professional formation for young researchers, and (iii) generate premises for the future formation of a larger scientific community with skills and knowledge in materials for medicine.
Read more
High quality HZO and AlN films grown by industrially compatible techniques for next generation electronic and sensing devices
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-0688
2020
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://infim.ro/en/project/high-quality-hzo-and-aln-films-grown-by-industrially-compatible-techniques-for-next-generation-electronic-and-sensing-devices/
Abstract:
The project aims to (i) delineate the conditions for the synthesis of high-quality Aluminum Nitride (AlN) and Hafnium – Zirconium Oxide (HZO) layers onto large-area substrates by Chemical Vapor Deposition (CVD) and Atomic Layer Deposition (ALD), and to (ii) integrate them into electronic devices. These two materials (AlN and HZO) have a great potential for high-tech industry, e.g. pyroelectric sensors and next-generation field effect transistors.
Fundamental physics and applicative studies will be harmoniously intertwined for a better understanding of these topical materials characteristics and of their impact on the output parameters of the devices.
The project activities are designed to find the answers to several critical pending issues, such as the pyroelectricity and the origin of ferroelectricity in HZO and of the negative capacitance effect, or the sustainability and limits of AlN-based sensors in harsh environments. Ferroelectric memories, metal-insulator-semiconductor and thin film field effect transistors structures will be fabricated and subsequently analyzed, and the results will be interpolated and discussed with respect to the physico-chemical features of the AlN and HZO thin films.
CVD and ALD techniques are underdeveloped in Romania, even though they have demonstrated tremendous advantages and applicability potential for the development and large-scale production of nano- and micro-electronics. Thereby, the development and successful application of the CVD and ALD techniques, in the framework of this project, for the deposition of high-quality thin films, will represent an important achievement, of high-interest, at both regional and national level.
Read more
Controlling the electronic properties in heterostructures based on ferroelectric perovskites: from theory to applications
Call name:
P 4 - Proiecte Complexe de Cercetare de Frontieră
PN-III-P4-ID-PCCF-2016-0047
2018
-
2022
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/control-of-electronic-properties-in-ferroelectric-perovskite-heterostructures-from-theory-to-applications/
Abstract:
The main objective of the project is to obtain ferroelectric materials with controlled electronic properties at the same level as this properties are controlled in Si. This will be realized by hetero-valent doping, correlated with stress engineering and band gap engineering without affecting, as much as possible, the ferroelectric properties. The main objective is complex and ambitious because, up to date, there was no experimental demonstration that it possible to obtain n or/and p type conduction in epitaxial ferroelectrics. The successful achievement of this objective will open a new domain, that of ferroelectric electronics or ferrotronics, by producing electronic devices of p-n homo-junction type or junction transistors with ferroelectric materials. Two types of materials are envisaged, namely lead titanate-zirconate (PZT with tetragonal structure and a mixed bismuth ferrite (BFO) with bismuth chromit (BCO). In the first case the heterovalent doping will be studied on Pb or Zr/Ti sites with the aim to obtain n and p type conduction. The final goal is to produce a p-n homo-junction based on epitaxial PZT films. In the second case band gap engineering will be tested by varying the Fe/Cr content, and the dominant conduction mechanism will be identified, the goal being to use the material in photovoltaic applications. The activities will contain: theoretical studies regarding the relation between dopants, electronic properties and the ferroelectricity, including self-doping effects or electrostatic doping; target preparation for deposition of thin films; epitaxial growth of the film; characterization activities of the structure and physical properties. Not only classic doping in the target is envisaged but also doping during the epitaxial growth. The consortium is composed of 4 teams from three different institutions, including a number of 14 young researchers full time equivalent.
Read more
NEW METHODS OF DIAGNOSIS AND TREATMENT: CURRENT CHALLENGES AND TECHNOLOGIC SOLUTIONS BASED ON NANOMATERIALS AND BIOMATERIALS
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0062
2018
-
2021
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE IN DOMENIUL PATOLOGIEI SI STIINTELOR BIOMEDICALE "VICTOR BABES" (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "CAROL DAVILA" (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "GRIGORE T. POPA" DIN IAŞI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE CHIMICO - FARMACEUTICA - I.C.C.F. BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA TRANSILVANIA BRASOV (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/sanomat/
Abstract:
The project will develop novel conceptual and functional solutions of biomedical devices for treatment, reinforcement/repair/replacement (of human tissues) and diagnosis based on nanostructured and/or biocompatible materials, with high attractivity and certain potential for technology transfer to industry. The experience of the interdisciplinary consortium will allow a passage from concepts of nanomaterials and biomaterials with extended and/or complementary functional features to implementation to new biomedical applications of great interest: (i) antitumoral therapeutic systems (by localized magnetic hyperthermia, photodynamic therapy and drug delivery); (ii) biocompatible compounds with enhanced antimicrobial efficacy; (iii) stent or vein/arterial filters implants based on ferromagnetic shape-memory alloys (with the advantage of repositioning without the need of new invasive interventions); (iv) personalized bone regenerative implants (i.e. porous ceramic scaffolds for bone tissue engineering; dental implants with rapid osseointegration); (v) (bio)sensors for monitoring the bioavailability of pharmaceutical compounds and detecting the reactive oxygen species and their biologic effect; and (vi) correlation of physico-chemical properties with clinical investigations for two types of aerosols (salt particles and essential oils), and their prospective coupling with possible synergistic effects. The synergic development of the institutional capacity of the project partners will be achieved by: creating new jobs and purchasing new equipment and software, providing technical/scientific assistance to the emerging institutions, initiating and fostering collaborations with partners from industry in view of technology transfer, and increasing the international visibility of the involved institutions by capitalizing on the obtained research results. The project will create the core of the first national cluster in the field of healthcare technologies.
Read more
New advanced nanocomposites. Technological developments and applications
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0871
2018
-
2021
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU OPTOELECTRONICA INOE 2000 INCD (RO); UNIVERSITATEA DE VEST TIMISOARA (RO); ACADEMIA ROMANA FILIALA TIMISOARA (RO); UNIVERSITATEA BABES BOLYAI (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU FIZICA TEHNICA-IFT IASI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA "DUNAREA DE JOS" (RO); UNIVERSITATEA TRANSILVANIA BRASOV (RO); Ministerul Apararii Nationale prin Centrul de Cercetare Stiintifica pentru Aparare CBRN si Ecologie (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/project/kuncser_noi_directii_de_dezvoltare_tehnologica_si_utilizare_nanocompozite_avansate_47pccdi_2018
Abstract:
The development of complex nanocomposite materials consisting of different matrices (polymer-like, oxides, intermetallics, liquids) functionalized by different nasnostructured additions (carbon allotropes, magnetic nanoparticles with different organizations, nanostructured semiconductors, etc.) is the aim of this project. The unique combinations of interacting nanophases offeres to the hybrid nanocomposite material new or enhanced proprieties of high interest for applications. In this context, according to the previous experience of the involved teams, the complex project (formed by 4 component projects) is focused on the development of new optimized nanocomposite systems to be included in experimental demonstrators or final products to be transferred to economical companies. The project will contribute both to an increased scientific visibility of the partners as well as to enhancing the institutional performances by the development of new technical and scientific capacities.
Read more
Synergy of antimicrobial agents incorporated in durable bio-glass coatings for endosseous implants
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-1501
2018
-
2020
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/synerglass/
Abstract:
Nowadays, antibiotic resistance becomes an important issue; as bacterial strains resistant to all known antibiotics appear, we are entering the “post-antibiotic era”. Acute complications emerge after implant surgery, as trauma will weaken the local immune response and allow pathogens to adhere and rapidly evolve within the implantation site. Severity increases in dentistry, where one cannot achieve an oral aseptic environment during implantation.
Hence, the project targets to unveil routes towards the synergic coupled effect of antimicrobial oxide agents (i.e. Ga2O3, CuO, Fe3O4, Ag2O), with different action mechanisms, incorporated in bio-glass magnetron sputtered layers, and thereby, the development of an advanced generation of implant coatings, capable to meet the current challenging requirements of osseous implantology: mechanical durability, match of coating and metallic substrate coefficients of thermal expansion, conservation of network connectivity along with bioactivity and osseointegration ability, match of bone healing rate with coating degradation speed, and effective antimicrobial action against a wide spectrum of pathogens. This will ineluctably translate in the safe and long-lasting performance of functionalized medical devices. Solutions to i) boost and control the duration of antimicrobial effect by means of sacrificial layers, ii) eliminate costly and time consuming stages from the intricate technological chain, and iii) improve the existing in vitro testing protocols, will be also proposed. The degree of innovation comprised in project goals can enable surpassing the current knowledge boundaries in the field of implant coatings, and thus, generate premises for technological transfer to industry and local economical growth. Besides the scientific targets, the project will aim to attract valuable human resources in national research and create opportunities of continual professional formation for young researchers to expand their knowledge and skills
Read more
3D laser additive manufacturing of cranial metallic prostheses functionalized with bioactive ceramic coatings
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2016-1309
2017
-
2018
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://cetal.inflpr.ro/projects/LaMP/PED241/
Abstract:
This Project starts from an existing technology for synthesis of personalized cranial prostheses developed in collaboration between the Laser-Surface-Plasma Interactions Laboratory in INFLPR and Dr. Oblu Hospital in Iasi and it aims towards a radical modification of the method for easier implementation, an increase in prostheses shape and dimensions flexibility and a drastic reduction of production costs. The initial procedure started with acquisition of commercial metallic prostheses shaped in form of a mesh (1), their coating with a thin film of bioactive ceramic by pulsed laser deposition, identification of fractures dimensions by computer tomography (3), manual cutting of the meshes function of the wound dimensions (5). The new method involves a single step direct synthesis by laser additive manufacturing of a prosthesis with required dimensions covered by a bioactive layer, starting from metallic and ceramic powders. The aim is to eliminate the steps that involve acquisition of expensive commercial devices and the deposition techniques that require high vacuum and heating of the prostheses at high temperatures. We aim at the end of the Project to delineate the technology that will allow a single user to scan a patient by computer tomography, the fracture’s dimensions to be introduced in a pre-established CAD-CAM software and with the push of a single button to be able to generate in real time a prosthesis with required dimensions and functionality.
Read more
Field effect transistors based on new transparent heterostructures synthesized at low temperatures
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-1122
2015
-
2017
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/projects/field-effect-transistors-based-new-transparent-heterostructures-synthesized-low
Abstract:
The main objective of the project is to manufacture transparent field effect transistors with superior performances, based on aluminum nitride gate dielectrics. Although aluminum nitride is a very promising material for such type of applications, its use as gate dielectric in transparent transistors is an international novelty. Therefore, this project can generate, by its implementation, a significant impact to the development of transparent electronics. The project proposal will entail complex and fluid research activities, from the synthesis of materials and their characterization in view of optimization, to the fabrication of high performing devices on both rigid and flexible substrates. In order to achieve transistors with an functional response superior to the one of the devices used currently in transparent electronics, the project team will employ a series of optimization solutions (testing new geometries, post-fabrication thermal treatments and various encapsulation solutions). Last but not least, the project will represent a great opportunity for the young project team to form a strong scientific nucleus, which, by using the complex infrastructure of the host institution, will be able to contribute to the progress of micro-nano-electronics, on both nationally and internationally level.
Read more
Temperature sensor based on GHz operating AlN/Si SAW structures
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0677
2014
-
2017
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); ROM-QUARTZ S.A. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.imt.ro/setsal
Abstract:
The main objective of this project consists in the manufacturing of the first temperature sensor based on a SAW type device on AlN/Si. The sensor is based on the variation of the SAW resonance frequency vs. temperature. The sensor will be characterized ”on wafer” in the 25-150 oC temperature range. The sensor structures mounted on a special ceramic carrier, provided with SMA connectors and cables, will be characterized in the 5-500 K temperature range inside a cryostat. We aim to obtain a sensitivity >75 ppm/oC (on-wafer measurements) and 60 ppm/ oC for measurements with connectors and cables, in the 23-150 oC temperature range.
The project corresponds to the world wide effort to obtain acoustic devices operating in the gigahertz frequency range, using wide band gap semiconductors (AlN, GaN). These materials have very good piezoelectric properties. High quality GaN and AlN layers grown or deposited on Sapphire SiC or Si substrate permits to use in the fabrication protocol nanolithography, micromachining techniques and monolithic integration. The advantage of using AlN for the SAW structure consist in the possibility to obtain a higher resonance frequency and a higher sensitivity for the sensor. The project has few objectives beyond the state of the art.
The main element will be a SAW structure on AlN/Si with the resonance frequency in the 6-9 GHz range. The highest resonance frequency obtained up to now for SAW structures on AlN/Si is 5.1 GHz and was reported by the IMT and INCD-FM groups, partners in this project, using an IDT structure with digits and interdigit spacing 300 nm wide. This project requires interdigitated transducers having the digit/interdigit spacing 80-150 nm wide, a challenge due to the major difficulties of the nanolithographyic process on materials like AlN or GaN. Up to now, the narrowest lines on AlN have been reported on an AlN/Diamond based SAW structure in 2012 (200 nm).
For the proposed sensor a „single resonator” structure will be developed. Compared with classical structures based on face-to-face resonators and delay lines, the single resonator structure offers few advantages: higher quality factor, lower losses and mainly, higher values for the sensitivity, as it was recently proved by IMT for GaN.
A two steps, low temperature, deposition process will be developed, for the synthesis of thin AlN films. The goal is to lower the FWHM of rocking curve at 1.5° for the AlN films deposited on Si.
There is a potential advantage of monolithic integration of the SAW based AlN temperature sensor in a CMOS ICs. AlN technology is CMOS compatible, due to its low deposition temperature. In such circuits fabrication protocols contain nanolithographic processes, therefore these processes for the sensor will not add significant costs.
The project consortium consists in four teams with excellent expertise and complementarity in the project topics. The IMT team has many contributions in the state of the art for acoustic devices on GaN and AlN, in nanolithography and microwave characterization. INCD-FM has an excellent expertise in high quality AlN films deposition. UPB has excellence expertise in design and modelling of high frequency devices and circuits. ROMQUARZ is the only Romanian enterprise with an authentiq experience in SAW type devices manufacturing on classical piezoelectric materials.They have been involved in SAW devices manufacturing on non-semiconductor materials (quartz, lithium niobate, etc) in the last 20 years.
Read more
Study of Induced Effects by Defects and Impurities on Optical, Electrical and Electronic Properties of Wide Band Gap Semiconductors
Call name:
Projects for Young Research Teams - TE-2011 call
PN-II-RU-TE-2011-3-0016
2011
-
2014
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor (RO)
Affiliation:
Project website:
http://www.infim.ro/projects/study-induced-effects-defects-and-impurities-optical-electrical-and-electronic-properties
Abstract:
The aim of this project is the analysis of wide band gap semiconductor (WBS) thin films by use of non-destructive characterization techniques: ellipsometry, XRD and luminescence. These materials have existing or potential applications in optics and/or electronics. WBS thin films will be obtained by use of different thin films growth methods: pulsed laser deposition, magnetron sputtering, sol-gel and direct growth from colloidal suspension. The influence of defects and impurities on optical, electrical and electronic properties of such materials will be analyzed. The results from presented optical studies will be verified by conventional electrical measurements and structural analysis by electronic microscopy.
The project is focused on 3 types of wide band gap semiconductors: zinc oxide (ZnO) pure or doped with different elements; zinc nitride (Zn3N2) and the intermediary phases during controlled oxidation; and aluminum indium nitride (AlxIn1-xN) pure and doped with Zn. One objective is to grow and to characterize the n-type semiconductors with reproducible properties.
The estimated results will bring new insights regarding the physics phenomena involved in the growth process and the material properties, essential for obtaining viable results. In addition, special activities will be included in the project concerning the correlation between the fundamental knowledge and practical necessities of electronics, and the standardization of the growth of thin films below 200C.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.5421, O: 280]