Log In
Sign Up
Romania
Citizenship:
Romania
Ph.D. degree award:
1991
Mr.
Dragoman
Mircea
senior scintific researcher 1
-
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Researcher | Scientific reviewer | Manager
>20
years
Personal public profile link.
Curriculum Vitae (10/04/2016)
Expertise & keywords
Mcro and nanoelectronics
nanosciences
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Novel nanostructured semiconductor materials based on Ge nanoparticles in different oxides for aplications in VIS-NIR photodetectors and nonvolatile memory devices
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1120
2012
-
2016
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU OPTOELECTRONICA INOE 2000 INCD (RO); INTERNET S.R.L. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.infim.ro/ro/NODE/3960
Abstract:
The primary aim is to obtain novel nanostructured semiconductor materials based on Ge nanoparticles (nps) with optimized properties to be used in photodetectors for the visible and infrared (VIS-NIR) ranges, and also in nonvolatile (NV) memory devices. This aim will be realized in the following objectives: A) Preparation and characterization of nanostructured films based on Ge nps in SiO2, TiO2, HfO2, with optimized photoconductive and electrical properties; B) Preparation and complex characterization of experimental models for VIS-NIR photodetector and NV memory using the optimized materials; C) Fabrication of VIS-NIR photodetector and NV memory to prove experimentally the concepts of the project and its applications; D) Estimation of the economic impact.
Based on the material research (Phase 1), and on the investigations of structures and experimental models (Phase 2), two prototypes will be fabricated in Phase 3, one for the VIS-NIR photodetector, and one for the NV memory, with corresponding technical specifications. Thus, we will prove that the novel nanostructured materials based on Ge nps obtained in this project are suitable for VIS-NIR photodetectors and NV memory devices. Also, the technical and economical analyses documentation and feasibility studies will be performed (Phase 4).
The two devices will be integrated into a system for event identification and an automated test and measurement system for industrial applications and manufacturing devices will be realized.
The results obtained by achieving the project objectives have a high level of originality and novelty. Therefore, the scientific results will be promoted in 5 papers in peer-reviewed journals, and in 7 communications at prestigious international conferences. The technological results will be the object of 3 patent applications.
Young students will be involved in the project, and this will have a formative effect (Master Dissertations and/or PhD theses).
Read more
Graphene nanoelectronic devices for high frequency applications
Call name:
Exploratory Research Projects - PCE-2011 call
PN-II-ID-PCE-2011-3-0071
2011
-
2016
Role in this project:
Coordinating institution:
INSTITUTUL NAŢIONAL DE CERCETARE-DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT Bucureşti
Project partners:
INSTITUTUL NAŢIONAL DE CERCETARE-DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT Bucureşti (RO)
Affiliation:
INSTITUTUL NAŢIONAL DE CERCETARE-DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT Bucureşti (RO)
Project website:
http://www.imt.ro/grafenerf/
Abstract:
The project will explore the graphene devices for ultrafast communications beyond 60 GHz. Similar to the famous Moore law, the Edholm law states that the need for higher bandwidths in wireless communications will double every 18 months. Today, for the wireless LANs, the carrier frequencies are around 5 GHz and the data rates are 110-200 Mb/s. However, according to Edholm law, wireless data rates around 1-5 Gb/s are required in few years from now. This means that the carrier frequencies for wireless communications should become higher than 60 GHz. However, in this bandwidth the devices and circuits able to form a wireless link at room temperature are very scarce. This limitation is due to relative high charge scattering rate and relative low mobilities encountered in all semiconductors at room temperature. So, in few years the ever increasing demand for ultrafast wireless communications will not be fully satisfied using the existing semiconducting technologies. To solve this expected bottleneck , we propose a radical solution which consists in using other materials and circuit configurations to fulfill the clear tendencies indicated by Edholm law. More specifically, we intend to design, fabricate and test miniaturized devices which work beyond 40 GHz based on graphene. Why graphene? Graphene has mobilities which are greater by orders of magnitude compared to compound semiconductors and other important properties outperforming any known material.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator
Download (24 kb) 18/04/2015
List of research grants as partner team leader
Download (24 kb) 18/04/2015
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.3646, O: 135]