Log In
Sign Up
Romania
Citizenship:
Romania
Ph.D. degree award:
Daniel-Eusebiu
Cretu
Research Assistant
PhD student
-
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI
Researcher | PhD student
Personal public profile link.
Expertise & keywords
Non-Thermal plasma
Cold atmospheric plasma generation &applications
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Double-sided bio-treatment of polymeric foil for food packaging using coupled DBD-Corona non-thermal plasma
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
ERANET-MANUNET-PlasmaPack
2020
-
2022
Role in this project:
Coordinating institution:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI
Project partners:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI (RO); PROSUPPORT CONSULTING SRL (RO); Istanbul Technical University (TR); Poşetsan Ambalaj San. Ve Tic A.Ş. (TR)
Affiliation:
Project website:
http://www.plasmapack.ieeia.tuiasi.ro/
Abstract:
The advantages of polymeric food packaging are widely recognized but the improper sterilization and/or disinfection of inner surface of polymer in contact with food may represent a major risk in food safety. On the other hand, the next generation of food packaging should be suitable for incorporating e-labels and smart labels in order to improve the traceability of the food products. The most important issue is related to both inner and outer surfaces of polymeric foil treatment, playing an important role in packaging and should satisfy the expectations in respect to food safety and labelling quality. In this regard, non-thermal plasma (NTP) emerged as technology capable of increasing the surface energy of polymers, enhancing adhesion and printability, and has been successfully applied for surface decontamination of both food products and food packaging. Accordingly, PlasmaPack aims to develop a technology based on NTP plasma (coupled DBD-Corona discharges) for double-sided treatment of polymeric foil used in food packaging. This will lead to proper disinfection (sterilization) of inner surface and facilitates smart labels printing on outer surface.
Read more
Experimental model for demonstrating the feasibility of increasing the therapeutic potential of wheat sprouts by treating them with non-thermal plasma activated water (PAW)
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-0556
2020
-
2022
Role in this project:
Coordinating institution:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI
Project partners:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "GRIGORE T. POPA" DIN IAŞI (RO); UNIVERSITATEA DE STIINTE AGRICOLE SI MEDICINA VETERINARA "ION IONESCU DE LA BRAD" (RO); CODALB-M.V. SRL (RO)
Affiliation:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI (RO)
Project website:
http://www.phytopaw.ieeia.tuiasi.ro/
Abstract:
The scope of this project is to develop an experimental device meant to demonstrate the feasibility of increasing the therapeutic potential of wheat sprouts (Triticum aestivum) by treating them with non-thermal activated water (PAW). The effect of natural products in the prophylaxis or even in the treatment of diseases is well known, since, in most cases, they have no side effects on the human body. Excellent results have been obtained following the introduction into the diet of natural products, even in cases considered incurable. Wheat sprouts are a rich source of nutrients (proteins, lipids, fibers, vitamins) and bioactive phytochemicals (BFT) (polyphenols, gamma-aminobutyric acid, etc.). The project propose the utilization of a non-thermal plasma-based technology (NTP) to produce plasma-activated water (PAW) aiming to increase the bioactive phytochemicals in wheat sprouts with benefits for human health and well-being. The technological innovation currently has been tested, as a small single laboratory unit, which can produce low concentrations of NO3- and H2O2 in water treated by non-thermal plasma. In order to bring this innovation to market, the key technical challenges of the proposal are referring to: the reactor/power supply scale-up to a laboratory complex equipment for PAW production, power supply optimization, long time tests of the complete system and correlation between the electrical parameters of the NTP with BFT produced by wheat sprouts.
Read more
Atmospheric pressure nonthermal plasma reactor for preTREATment of pOlymeric substrates used in printable FLEXible electronics manufacturing
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
ERANET-MANUNET-III-Treatoflex
2020
-
2022
Role in this project:
Coordinating institution:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI
Project partners:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI (RO); PROSUPPORT CONSULTING SRL (RO); FUNDACION I+D AUTOMOCION Y MECATRONICA (ES); MATEPRINCS (ES)
Affiliation:
Project website:
http://www.treatoflex.ieeia.tuiasi.ro
Abstract:
Flexible electronics also known as organic electronics is defining a category of electronic devices developed on a bendable substrate material (mainly polymers, but also paper) with the aim of addressing the current societal needs in terms of applications (e.g. increasing the energy production from renewable sources, improving energy efficiency, providing new diagnosis tolls for health system), targets which can be reached only by diminishing the production cost of the electronic and electrical devices. The herein proposal is aiming to foster the development of flexible printed electronics processes by proposing a solution to the disadvantages of the current manufacturing technology. Thus, the Consortium is proposing utilization of a plasma based technology for pretreating the surface of the polymeric substrate at atmospheric pressure and room temperature, in the absence of additional gases. The new technology which is to demonstrate high potential of being integrated at the level of screen printing and inkjet printing processes may impact significantly the economic situation of both SMEs and ensure their improved position within International supply chain.
Read more
Evaluation of the activated water produced by different non-thermal plasma reactors
Call name:
P 3 - SP 3.1 - Proiecte de mobilități, România-Franța (bilaterale)
PN-III-P3-3.1-PM-RO-FR-2019-0213
2019
-
2021
Role in this project:
Partner team leader
Coordinating institution:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI
Project partners:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI (RO); GREMI-Site de Bourges, UMR7344, CNRS/Université d'Orléans (FR)
Affiliation:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI (RO)
Project website:
http://www.paw-ev.tuiasi.ro/
Abstract:
The main objective of the project is to obtain a complete evaluation of reactive species concentrations (especially NO3 and H2O2) into non-thermal plasma (NTP) activated water, PAW, when using different NTP reactors and different primary parameters (water flowrate, gas flowrate, electrical parameters). The obtained results will allow realizing a complete image in choosing the optimum conditions for producing PAW (reactor and primary operating parameters) for irrigating plants in different vegetation stages.
Read more
Microfluidic platform for circulating tumour cells (CTCs) concentration through dielectrophoresis-magnetophoresis and analyzed via broadband dielectric spectroscopy and electrochemical impedance
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0214
2018
-
2021
Role in this project:
Coordinating institution:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI
Project partners:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE MEDICO-MILITARA „CANTACUZINO” (RO); UNIVERSITATEA TRANSILVANIA BRASOV (RO)
Affiliation:
Project website:
http://www.ucelldetect.ro
Abstract:
The overall objective (GO) of uCellDetect is assuming the development of a microfluidic platform which is to integrate electromanipulation (DEP dielectrophoresis) technologies combined with magnetomanipulation (MPA – magnetophoresis) allowing the improvement of sorting and trapping capacity of circulating tumour cells (CTCs) harvested and purified from surgically excised tumors. Simultaneously with the sorting and trapping, on the basis of CTCs’ specific properties (electrical magnetic, electrochemical and spin), at the level of microfluidic platform the characterization of CTCs through broadband dielectric spectroscopy, electrochemical impedance and spintronic detection will be possible, fact which will ensure the precocious diagnosis, minimally invasive, tumours stabilization, monitoring and assessment of therapeutical interventions. The innovative device which is to be developed within 24 months will represent a fast and cheap technology allowing patients to appeal to an affordable diagnosis technology in comparison with the conventional costly and laborious technologies. The Consortium is encompassing 4 partners (two universities, one nationa R&D center and a revival R&D center) which agreed to share expertise, scientific, human and material resources (R&D infrastructure) grant integral complimentary approaches within the Bionanotechnology domain with immediate application in biomedicine.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.3931, O: 171]