Log In
Sign Up
Romania
Citizenship:
Romania
Ph.D. degree award:
2013
Mrs.
Cristina
Besleaga Stan
CS II
Researcher
-
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Researcher
13
years
Web of Science ResearcherID:
G-5179-2012
Personal public profile link.
Curriculum Vitae (16/11/2023)
Expertise & keywords
Functional thin films
Thin films based -transparent electronics devices
Thin layers
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Optoelectric microfluidic system for tumor cells characterization and separation according to their malignancy grade
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2021-0451
2022
-
2024
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "CAROL DAVILA" (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://cetal.inflpr.ro/newsite/ped_596
Abstract:
In the present project we shall fabricate and validate a microfluidic device based on dielectrophoresis and optical tweezers capable to characterize and separate cancer cells according to their malignancy potency. Specifically, using a novel fabrication approach, we will develop a compact glass based optoelectric biochip for efficient cell trapping followed by microfluidic separation. The device will provide a complete label-free method of cell separation and consists in creating a double trap due to gradients of electric field amplitude and laser light intensity. The sorted cells can be further used for downstream applications (such as, precision medicine diagnostic by providing specific cell subsets or obtaining specific cell cultures for selection of chemotherapy drugs). The device has the perspective to be integrated into an automated theranostic technology or system to evaluate specific cancer cells types and to sort them in designated groups.
Read more
NANOSTRUCTURED COATING TECHNOLOGY FOR SELF CLEANING AND ANTIBACTERIAL WINDOWS
Call name:
P 2 - SP 2.1 - Proiect de transfer la operatorul economic
PN-III-P2-2.1-PTE-2021-0150
2022
-
2024
Role in this project:
Coordinating institution:
OPTOELECTRONICA - 2001 S.A.
Project partners:
OPTOELECTRONICA - 2001 S.A. (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL DE MECANICA SOLIDELOR (RO)
Affiliation:
Project website:
https://nanotechwin.optoel.ro/
Abstract:
The scope of the project is to increase the innovation capacity and competitiveness of the coordinating enterprise S.C. OPTOELECTRONICA-2001 SA, by developing its offer of technologies and products adapted to the market requirements to streamline the maintenance of constructions that have large surface windows. The economic agent develops technology for coating windows with antibacterial and self-cleaning properties nanostructured layers by assimilating the RDI results of the partners, the National Institute of Materials Physics and the Institute of Solid Mechanics of the Romanian Academy.
The objectives of the project are: obtaining glass prototype (window surface with nanostructured layers) with antibacterial and self-cleaning properties; obtaining equipment prototype for deposition (printing) of nanostructured layers (TiO2) on glass substrate with surface dimensions equivalent to A2 format; obtaining prototype technology for coating windows with nanostructured layers; connecting applied research and technological progress in Romania to the evolution and requirements of the socio-economic environment; increasing the innovation capacity of the applicant enterprise, through the development of new technology and product, estimated to have the potential for commercial exploitation on the domestic and international markets.
TiO2 coatings will be obtained through an innovative technology patented by INCDFM through which the morphology of the TiO2 layer can be modified to improve the wetting properties of the surface and therefore the self-cleaning efficiency, and to increase the antibacterial activity that depends mainly on surface chemistry and structure. This technology has an important advantage in the economy of producing TiO2 coatings on an industrial scale, the technological processes developed requiring temperatures lower than 150°C and for very short times (less than 15 min).
Read more
Towards perovskite large area photovoltaics
Call name:
EEA Grants - Proiecte Colaborative de Cercetare
EEA-RO-NO-2018-0106
2021
-
2024
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); University of Oslo (NO); Reykjavík University (IS); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH (RO); TRITECH GROUP SRL (RO)
Affiliation:
Project website:
http://perla-pv.ro/
Abstract:
The perovskite solar cells (PSC) have attracted a considerable interest in photovoltaics community, showing a very fast development in terms of power conversion efficiency (PCE), reaching now values over 25% certified PCE in not stabilized small area samples, proving that they can become real competitors to commonly used solar-cell materials (e.g based on Si). Not only the remarkably large PCE is an important asset, but also the low production costs makes the PSCs very attractive for the solar cell technology, as solution processing techniques are typically employed. In addition, they can be hosted by a long range of flexible substrates, pushing further the record for power per weight and implicitly their utility. However, while the high PCE values and the low production costs are important advantages for PSC, the real challenges to overcome prior of industrial production are their stability in time, reliability and reproducibility of the performance as well as environmental issues raised by the use of toxic elements/solvents. These are well known problems for the small area standard and inverted PSCs, produced by spin-coating in research laboratories and inherently remain the same when envisaged is the fabrication of large area devices. The project addresses these issues starting from the premise that coherent experimental and theoretical studies should be done using from the start cheap deposition techniques applicable on large areas (printing and sputtering). Beside allowing the scaling up, such techniques can be better controlled offering a better homogeneity in deposition than the spin-coating method. The present project includes fundamental and applicative research aiming to achieve both scientific and practical goals. The overall aims/objectives of the project are: A) to develop efficient, stable, reproducible standard and inverted perovskite solar cells and photovoltaic modules fabricated with affordable large area and environmental friendly technologies. It is expected that by developing low cost and stable photovoltaic panels with optimized efficiency the use of such devices in public and private buildings will be boosted, contributing thus to increasing the share of renewable energy in energy balance in Romania and Donor States; B) to strengthen the knowledge base concerning the application of environmental technology; new knowledge will be acquired regarding how PSCs can be optimized for large scale applications and how can they be fabricated using environmentally friendly technologies with low carbon footprint. Specific objectives to be achieved during the project are: O1 - understand the physical working principles of perovskite solar cells and find solutions to increase and stabilize the PCE while enlarging the area of the cells; O2 – reduce the amount of costly materials and toxic solvents used in the fabrication process of both standard and inverted PSC structures with other inexpensive and environmental friendly; O3 - stabilize the PCE performance of PSC via compositional engineering and proper replacements including the selective contacts; O4 - enhance the charge collection efficiency by optimizing interfaces between the layers in the cell; O5 - develop cheap large area fabrication technologies (printing and sputtering) for all the component layers in PSCs, standard and inverted structures; O6 - obtain efficient large area encapsulated PSCs and photovoltaic modules with PCE over 15%. The starting TRL is 3 and the envisaged TRL is 6, meaning that fully operational photovoltaic modules will be manufactured and tested in relevant industrial environment with the help of the SME partner.
The consortium is composed by 5 partners: National Institute of Materials Physics (NIMP), Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), and Tritech Group (WATTROM), a SME as end-user, all from Romania; Oslo University (UiO) from Norway, and Reykjavik University (RU) from Iceland.
Read more
Electronic double layer high mobility Mott transistors
Call name:
P 4 - Proiecte de Cercetare Exploratorie, 2020
PN-III-P4-ID-PCE-2020-2540
2021
-
2023
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://motttransistors.wordpress.com/
Abstract:
A field-effect LaAlO3/SrTiO3 - based transistor, with enhanced mobility, operated through electrolyte gating will be designed. This will be accomplished by merging the most advanced preparation techniques with the knowledge already available to the date on oxide electronics, highly supported by the expertise of the implementation team. The infrastructure available in NIMP allows the preparation of engineered LaAlO3/SrTiO3 - LAO/STO heterostructures, which is known to host a two dimensional electron gas at the interface (2DEG) [1-4]. Enhancing the 2DEG mobility will be achieved by furher inserting Mott insulators (MIs) buffer layers at the LAO/STO interface in order to alter the interface electronic structure and boost the mobility through modulation of carrier concentration in the 2DEG. The drain current will be modulated by n or p field effect doping of the interface region. The device will be operated in a double layer transistor configuration through electrolyte top gating. This allows to effectively bias our devices, overcoming the well-known effects of contact breakdown due to high voltages required to drive the all-oxide transistors. The gates of our transistor will be patterned at micron scale by a combination of litography and lift-off techniques, depositing Au/Ti contacts, then the top, gate region will be covered by ionic polymers/gels (or ionic liquids) used as the electrolyte which, under bias will form the double layer
Read more
Science and Engineering of Kesterites for the Next Generation of Solar Cells
Call name:
P 4 - Proiecte de Cercetare Exploratorie, 2020
PN-III-P4-ID-PCE-2020-0827
2021
-
2023
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://infim.ro/en/project/kestercell-2/
Abstract:
The project aims to develop by concentration engineering Cu2ZnSn(Ge)S(Se) thin films using a novel simultaneous co-deposition using magnetron sputtering from 3 up to 6 different targets, revealing original scientific insights regarding the structural, optical and electrical properties of kesterites and the photovoltaic characteristics of corresponding solar cells in correlation with composition, and producing by interface engineering (front and contact innovations) new solar cells with efficiency near or above the present world record.
Read more
3D direct ink writing (robocasting) of bioceramic porous scaffolds: towards a new generation of bone graft substitutes
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-0463
2021
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
https://infim.ro/en/project/robonegraft/
Abstract:
Bone transplantation demand stems from tissue deficiency or a substantial skeletal loss, and has multiple causes: age, severe trauma, chronical bone disorders/infections, tumor resections, congenital bone defects. Bone grafting evolved in the last decade into a distinct biomedical segment, which will continuously expand. Responding to this necessity, the project proposal aims to delineate series of innovative architectural solutions of porous bone graft substitutes (BGSs) to be fabricated by accessible and performant 3D robocasting technologies, from bioactive and/or piezoelectric ceramics. Their functional performance will be assessed to prospect their potential for developing a new generation of BGSs capable to satisfy the mechanical and biological requirements of both trabecular and the more demanding cortical bone regions. New routes for endowing angiogenesis, osteogenesis and antibacterial capabilities to both the bioactive and piezoceramic BGSs, such as to enable their rapid, safe and long-lasting osseointegration, will be explored and implemented. Not least the proposal will tackle another highly important issue: the lack of standard in vitro protocols for uniform cell seeding of porous scaffolds.
Innovative and original fundamental and technological elements are expected to emerge: (a) design of bioactive ceramics with controlled degradability and therapeutic ion release, (b) coupling of mechanical strong piezoelectric ceramics with biofunctional materials and (c) in vitro testing of piezoelectric effect on cells behavior under dynamical mechanical stress conditions. The project will lead to the creation of an independent research team of young scientists with complementary skills, and strive to (i) attract human resources in the national research; (ii) create opportunities of professional formation for young researchers, and (iii) generate premises for the future formation of a larger scientific community with skills and knowledge in materials for medicine.
Read more
High quality HZO and AlN films grown by industrially compatible techniques for next generation electronic and sensing devices
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-0688
2020
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
https://infim.ro/en/project/high-quality-hzo-and-aln-films-grown-by-industrially-compatible-techniques-for-next-generation-electronic-and-sensing-devices/
Abstract:
The project aims to (i) delineate the conditions for the synthesis of high-quality Aluminum Nitride (AlN) and Hafnium – Zirconium Oxide (HZO) layers onto large-area substrates by Chemical Vapor Deposition (CVD) and Atomic Layer Deposition (ALD), and to (ii) integrate them into electronic devices. These two materials (AlN and HZO) have a great potential for high-tech industry, e.g. pyroelectric sensors and next-generation field effect transistors.
Fundamental physics and applicative studies will be harmoniously intertwined for a better understanding of these topical materials characteristics and of their impact on the output parameters of the devices.
The project activities are designed to find the answers to several critical pending issues, such as the pyroelectricity and the origin of ferroelectricity in HZO and of the negative capacitance effect, or the sustainability and limits of AlN-based sensors in harsh environments. Ferroelectric memories, metal-insulator-semiconductor and thin film field effect transistors structures will be fabricated and subsequently analyzed, and the results will be interpolated and discussed with respect to the physico-chemical features of the AlN and HZO thin films.
CVD and ALD techniques are underdeveloped in Romania, even though they have demonstrated tremendous advantages and applicability potential for the development and large-scale production of nano- and micro-electronics. Thereby, the development and successful application of the CVD and ALD techniques, in the framework of this project, for the deposition of high-quality thin films, will represent an important achievement, of high-interest, at both regional and national level.
Read more
High-k Nanoparticle Multilayer Dielectrics for Nanoelectronics and Energy Storage Applications
Call name:
P 4 - Proiecte Complexe de Cercetare de Frontieră
PN-III-P4-ID-PCCF-2016-0175
2018
-
2022
Role in this project:
Coordinating institution:
UNIVERSITATEA "ŞTEFAN CEL MARE" DIN SUCEAVA
Project partners:
UNIVERSITATEA "ŞTEFAN CEL MARE" DIN SUCEAVA (RO); UNIVERSITATEA "ALEXANDRU IOAN CUZA" IASI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://nanomat.usv.ro/pagina-05-5-a.php
Abstract:
Dielectrics are insulating materials that have been the workhorse in computing and electronics. Since the invention of the transistor and the integrated circuit the modern complementary metal oxide-semiconductor (CMOS) technology heavily relied on rigid SiO2/Si substrates and the relentless downscaling of the size of the transistor has been the core driver for the information revolution. However, to meet the increasing need for miniaturization, low power function and portability in both the civilian and military sector, discrete electronic components, such as capacitors, resistors, inductors and transistors should be replaced by embedded circuitry. An important roadblock in the development of energy storage and memory/switching devices with increased efficiency and range of operation is the rather low dielectric permitivity and carrier mobilities of organic polymer materials. The four research teams of the present consortium, led by A. Rotaru (USV, Suceava), L. Mitoseriu (UAIC, Iasi), I. Pintilie (NIMP, Bucharest) and A. Marcu (INFLPR, Bucharest), propose to demonstrate proof concept of manufacturable nanocrystal film structures with a high dielectric permitivity with direct applications in high energy density storage and low-voltage modulated field effect transistors and logic devices. In addressing these challenges we will use complementary expertise in materials synthesis and characterization, device design and testing with the potential of disruptive innovation in flexible electronics.
Read more
Controlling the electronic properties in heterostructures based on ferroelectric perovskites: from theory to applications
Call name:
P 4 - Proiecte Complexe de Cercetare de Frontieră
PN-III-P4-ID-PCCF-2016-0047
2018
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/control-of-electronic-properties-in-ferroelectric-perovskite-heterostructures-from-theory-to-applications/
Abstract:
The main objective of the project is to obtain ferroelectric materials with controlled electronic properties at the same level as this properties are controlled in Si. This will be realized by hetero-valent doping, correlated with stress engineering and band gap engineering without affecting, as much as possible, the ferroelectric properties. The main objective is complex and ambitious because, up to date, there was no experimental demonstration that it possible to obtain n or/and p type conduction in epitaxial ferroelectrics. The successful achievement of this objective will open a new domain, that of ferroelectric electronics or ferrotronics, by producing electronic devices of p-n homo-junction type or junction transistors with ferroelectric materials. Two types of materials are envisaged, namely lead titanate-zirconate (PZT with tetragonal structure and a mixed bismuth ferrite (BFO) with bismuth chromit (BCO). In the first case the heterovalent doping will be studied on Pb or Zr/Ti sites with the aim to obtain n and p type conduction. The final goal is to produce a p-n homo-junction based on epitaxial PZT films. In the second case band gap engineering will be tested by varying the Fe/Cr content, and the dominant conduction mechanism will be identified, the goal being to use the material in photovoltaic applications. The activities will contain: theoretical studies regarding the relation between dopants, electronic properties and the ferroelectricity, including self-doping effects or electrostatic doping; target preparation for deposition of thin films; epitaxial growth of the film; characterization activities of the structure and physical properties. Not only classic doping in the target is envisaged but also doping during the epitaxial growth. The consortium is composed of 4 teams from three different institutions, including a number of 14 young researchers full time equivalent.
Read more
Multifunctional dielectric materials produced by spark plasma sintering for passive microwave devices
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-3351
2020
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
https://infim.ro/project/master-2/
Abstract:
Low-loss temperature stable dielectric materials have been used to decrease the cost and size of the passive microwave devices (eg. filters, oscillators, multiplexers, antennas). The main objective of the project is to exploit the versatility of the spark plasma sintering (SPS) technique in order to prepare Zr1-xSnxTiO4 (ZST) solid solutions with various shapes whose multifunctional properties set the ground for development of the new generation of high performance microwave devices. Even though has several advantages, SPS can produce a lot of oxygen vacancies in oxide materials and such defects increase the dielectric loss. In order to overcome this drawback, as-sintered sample will be ex-situ annealed in air or oxygen atmosphere. Apart of usual structural and morphological characterizations, the extrinsic contribution to the losses will be investigated by microwave spectroscopy and terahertz time-domain spectroscopy. Through the analysis of the “synthesis - microstructure – properties” cycle, the technology suitable for fabrication of “zero-porosity” ZST ceramics with low dielectric loss in microwave domain will be developed. The targeted results would allow achieving of materials with multifunctional properties with a breakthrough potential in terms of efficiency and cost-effectiveness of the passive microwave devices required in the future monitoring and communications systems.
Read more
NEW METHODS OF DIAGNOSIS AND TREATMENT: CURRENT CHALLENGES AND TECHNOLOGIC SOLUTIONS BASED ON NANOMATERIALS AND BIOMATERIALS
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0062
2018
-
2021
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE IN DOMENIUL PATOLOGIEI SI STIINTELOR BIOMEDICALE "VICTOR BABES" (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "CAROL DAVILA" (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "GRIGORE T. POPA" DIN IAŞI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE CHIMICO - FARMACEUTICA - I.C.C.F. BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA TRANSILVANIA BRASOV (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/sanomat/
Abstract:
The project will develop novel conceptual and functional solutions of biomedical devices for treatment, reinforcement/repair/replacement (of human tissues) and diagnosis based on nanostructured and/or biocompatible materials, with high attractivity and certain potential for technology transfer to industry. The experience of the interdisciplinary consortium will allow a passage from concepts of nanomaterials and biomaterials with extended and/or complementary functional features to implementation to new biomedical applications of great interest: (i) antitumoral therapeutic systems (by localized magnetic hyperthermia, photodynamic therapy and drug delivery); (ii) biocompatible compounds with enhanced antimicrobial efficacy; (iii) stent or vein/arterial filters implants based on ferromagnetic shape-memory alloys (with the advantage of repositioning without the need of new invasive interventions); (iv) personalized bone regenerative implants (i.e. porous ceramic scaffolds for bone tissue engineering; dental implants with rapid osseointegration); (v) (bio)sensors for monitoring the bioavailability of pharmaceutical compounds and detecting the reactive oxygen species and their biologic effect; and (vi) correlation of physico-chemical properties with clinical investigations for two types of aerosols (salt particles and essential oils), and their prospective coupling with possible synergistic effects. The synergic development of the institutional capacity of the project partners will be achieved by: creating new jobs and purchasing new equipment and software, providing technical/scientific assistance to the emerging institutions, initiating and fostering collaborations with partners from industry in view of technology transfer, and increasing the international visibility of the involved institutions by capitalizing on the obtained research results. The project will create the core of the first national cluster in the field of healthcare technologies.
Read more
Technologic paradigms in synthesis and characterization of variable dimensionality systems
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0152
2018
-
2021
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU TEHNOLOGII CRIOGENICE SI IZOTOPICE - I.C.S.I. RAMNICU VALCEA (RO); UNIVERSITATEA DE VEST TIMISOARA (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU FIZICA TEHNICA-IFT IASI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/project/vardimtech/, http://infim.ro/project/vardimtech-en
Abstract:
Last decades brought a considerable development of technologies based on ordered systems. Starting with semiconductor physics and photovoltaics, technologies soon evolved towards the utilisation on large scale of thin films and of surface / interface properties. Example go nowadays from data storage and readout (electrostatic or magnetic memories, giant magnetoresistance) to catalysis, gas sensors or photocatalysis (surface phenomena), and towards interfaces with biological matter (biosensors, templates for tissue reconstruction, interfaces between biological electrical signals and microelectronics). In Romania, crystal growth is performed since half a century; nevertheless, during the last years these activities fade out and need to be seriously reinforced, especially with the advent of new laser and detector technologies required by the Extreme Light Infrastructure facilities. Also, surface science started to be developped seriously only during the last decade, together with techniques involving self-organized nanoparticles, nanoparticle production etc. The main goal of this Project is to gather the relevant experience from the five partners, namely the experience in crystal growth from the University of Timișoara, with the surface science, nanoparticle and nanowire technologies developped by NI of Materials Physics, the cryogenic and ultrahigh vacuum techniques provided by the NI for Cryogenic and Isotopic Technologie, and the experience in ordered 2D systems (graphene and the like) owned by the NI for Microtechnologies (IMT). This common agenda will result in a coherent fostering of technologies relying on ordered systems of variable dimensionalities: 0D i.e. clusters or nanoparticles, including quantum dots; 1D i.e. free and supported nanowires and nanofibers; 2D: surfaces, interfaces and graphene-like systems; and 3D crystals of actual technological interest, together with setting up new ultrahigh vacuum, surface science and electron spectroscopy techniques.
Read more
A map for ovonic threshold switching materials
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-1997
2018
-
2020
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/a-map-for-ovonic-threshold-switching-materials-amos/
Abstract:
AMOS aims to build a map for the discovery of novel chalcogenide materials with ovonic threshold switching (OTS), enabling the creation of high density crossbar memory arrays. OTS is a volatile electrical characteristic of a chalcogenide material, which can rapidly swap from a low to a high conductivity state, by applying a voltage that exceeds the threshold voltage. First, a database of materials properties, using a combination of computed and measured data will be constructed. Atomic properties such as electronegativity, orbital radii and bond enthalpies will be used to compute hybridization, ionicity and glass transition temperature, whereas measured data will be generated by combinatorial deposition and thorough physical characterization of thin films to evaluate the band gap and crystallization temperature. This database will be visualized as a map. Statistical methods will be employed for the systematic identification of new OTS materials with specific properties. Selected materials from the predicted OTS class, belonging to binary and ternary chalcogenide systems, will be used to build test devices by photolithography. From the evaluation of their current-voltage behavior, the OTS will be experimentally verified. Well established sub-threshold conduction models will be applied in order to extract material properties, such as trap height and density of defects in the band gap. The interplay between the trap density and trap depth in chalcogenides could be the key for designing OTS materials with application-specific electrical characteristics. The rational, data-driven search for materials has the potential to mitigate the costs, risks, and time involved in the current trial-and-error approaches. Systematic exploration of the materials space can significantly accelerate the discovery of new chalcogenide materials and contribute to solving current data storage needs.
Read more
Synergy of antimicrobial agents incorporated in durable bio-glass coatings for endosseous implants
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-1501
2018
-
2020
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/synerglass/
Abstract:
Nowadays, antibiotic resistance becomes an important issue; as bacterial strains resistant to all known antibiotics appear, we are entering the “post-antibiotic era”. Acute complications emerge after implant surgery, as trauma will weaken the local immune response and allow pathogens to adhere and rapidly evolve within the implantation site. Severity increases in dentistry, where one cannot achieve an oral aseptic environment during implantation.
Hence, the project targets to unveil routes towards the synergic coupled effect of antimicrobial oxide agents (i.e. Ga2O3, CuO, Fe3O4, Ag2O), with different action mechanisms, incorporated in bio-glass magnetron sputtered layers, and thereby, the development of an advanced generation of implant coatings, capable to meet the current challenging requirements of osseous implantology: mechanical durability, match of coating and metallic substrate coefficients of thermal expansion, conservation of network connectivity along with bioactivity and osseointegration ability, match of bone healing rate with coating degradation speed, and effective antimicrobial action against a wide spectrum of pathogens. This will ineluctably translate in the safe and long-lasting performance of functionalized medical devices. Solutions to i) boost and control the duration of antimicrobial effect by means of sacrificial layers, ii) eliminate costly and time consuming stages from the intricate technological chain, and iii) improve the existing in vitro testing protocols, will be also proposed. The degree of innovation comprised in project goals can enable surpassing the current knowledge boundaries in the field of implant coatings, and thus, generate premises for technological transfer to industry and local economical growth. Besides the scientific targets, the project will aim to attract valuable human resources in national research and create opportunities of continual professional formation for young researchers to expand their knowledge and skills
Read more
Lead-free halide perovskite photo-transistors as first step towards hybrid lead-free OLETs for next generation displays
Call name:
P 1 - SP 1.1 - Proiecte de cercetare Postdoctorală
PN-III-P1-1.1-PD-2016-1546
2018
-
2020
Role in this project:
Project coordinator
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/lead-free-halide-perovskite-photo-transistors-as-first-step-towards-hybrid-lead-free-olets-for-next-generation-displays/
Abstract:
Recently, it was found the suitability of the halide perovskite materials to excel in opto-electronic and electronic applications. Indubitably, the leader of its class is the methylammonium lead iodide perovskite. The lead based halide perovskite garnered significant attention due to excellent response as light absorber in hybrid solar cells, however, there are concerns regarding its toxicity. Many of the outstanding properties seen in these materials are thought to derive from the 6s2 electronic configuration of lead, a configuration seen in post-transition metal compounds. This project is looking beyond lead to another ns2 based halide perovskite: methylammonium antimony iodide compound ( (CH3NH3)3Sb2I9 ).
Regarding their application, due to their high absorption coefficient, large carrier’s mobility and versatility in band-gap tunning (from blue to infrared), the halide perovskite can be successfully used in both solar cells and photo-transistors. From development of such photo-transistors will benefit the hybrid light emitting transistors envisioned for the next generation displays. The research regarding halide perovskite based photo-transistors is breaking new ground and this project will provide the opportunity of exploring this new and intriguing research field.
The goal of this project is to develop photo-transistors based on lead-free halide perovskite and to investigate the relation between the light and charge transport in lead-free halide perovskites.
Read more
New approaches for the synthesis of hybrid organic-inorganic perovskit (HOIP)-type materials with possible ferroelectric properties for photovoltaic applications
Call name:
P 4 - Proiecte de Cercetare Exploratorie
PN-III-P4-ID-PCE-2016-0692
2017
-
2019
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/new-approaches-for-the-synthesis-of-hybrid-organic-inorganic-perovskit-hoip-type-materials-with-possible-ferroelectric-properties-for-photovoltaic-applications/
Abstract:
The ambitious goal of PEROFER proposal is to design new approaches for the synthesis of hybrid organic-inorganic perovskite-type materials with possible ferroelectric properties for photovoltaic applications. The advantages of hybrid organic-inorganic perovskite (HOIP) are: i) their low cost, ii) use of Earth-abundant and available elements, and iii) low-temperature processing synthetic routes through which they can be produced. Nevertheless, before commercialization of HOIP for photovoltaic technology there are some scientific and technical drawbacks which must be overcome: i) poor reproducibility of the HOIP materials; ii) lack of uniformity of the perovskite layers; iii) rapid degradation in moist environments (especially water); iv) lack of long-term stability of perovskite solar cells; v) suffers from bandgap larger than the ideal; iv) the use of highly toxic and carcinogenic Pb element with high environmental impact.
To give a chance to hybrid organic-inorganic perovskite onto the market, the development of very efficient, cost-effective and environmental friendly synthesis method of HOIP is highly desired.
The challenges of PEROFER proposal are original and innovative, and require scientific breakthroughs in fundamental phenomena and significant technological developments.
Read more
3D laser additive manufacturing of cranial metallic prostheses functionalized with bioactive ceramic coatings
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2016-1309
2017
-
2018
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://cetal.inflpr.ro/projects/LaMP/PED241/
Abstract:
This Project starts from an existing technology for synthesis of personalized cranial prostheses developed in collaboration between the Laser-Surface-Plasma Interactions Laboratory in INFLPR and Dr. Oblu Hospital in Iasi and it aims towards a radical modification of the method for easier implementation, an increase in prostheses shape and dimensions flexibility and a drastic reduction of production costs. The initial procedure started with acquisition of commercial metallic prostheses shaped in form of a mesh (1), their coating with a thin film of bioactive ceramic by pulsed laser deposition, identification of fractures dimensions by computer tomography (3), manual cutting of the meshes function of the wound dimensions (5). The new method involves a single step direct synthesis by laser additive manufacturing of a prosthesis with required dimensions covered by a bioactive layer, starting from metallic and ceramic powders. The aim is to eliminate the steps that involve acquisition of expensive commercial devices and the deposition techniques that require high vacuum and heating of the prostheses at high temperatures. We aim at the end of the Project to delineate the technology that will allow a single user to scan a patient by computer tomography, the fracture’s dimensions to be introduced in a pre-established CAD-CAM software and with the push of a single button to be able to generate in real time a prosthesis with required dimensions and functionality.
Read more
Novel generation of pyroelectric detectors based on polar semiconductors
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
ERA-M-NOPYDET
2015
-
2018
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); MICROELECTRONICA SA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
Abstract:
The project is proposing to develop a new generation of pyroelectric detectors based on wide gap polar semiconductor materials (e.g. AlN, ZnO) able to withstand high operating temperatures. The innovative aspects will go further beyond the state of the art by proposing multilayer structures based on nitrides (AlN, GaN, etc.) and ZnO-ferroelectric structures with the aim to enhance the sensitivity as much as possible at elevated temperatures. Specific innovative aspects can result also from packaging solutions, electronic for signal processing, etc. The detectors are primarily designated for internal combustion and jet engines used in automobile and airplane industries. The aim is to increase the lifetime of the engines, their safety and to optimize the fuel consumption with reduction of green house gases emissions. The expected impact is very high considering the share of the two industries at EU level and worldwide.
Read more
Enhancement of dental implants biointegration by coating with bioglass thin films with osteoinductive and antimicrobial properties
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-0180
2015
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/projects/enhancement-dental-implants-biointegration-coating-bioglass-thin-films-osteoinductive-and
Abstract:
The project aims to develop and test in vivo a new generation of dental implants functionalized with bioglass (BG) coatings with osteoinductive and antimicrobial properties, capable to enable a faster osseointegration, safety and comfort, a high success rate, and long lifetime. The project will build on a rich experience in fabricating BG coatings by magnetron sputtering (RF-MS) and a trans-disciplinary and dynamic team, constituted of young researchers with complementary expertise. The BG implant-coating design refinements and in vitro functional interrogations will continue, in order to maximize the biological response, allowing, in a next stage, the in vivo testing on animal model of the true potential of BG films synthesized by RF-MS to induce a rapid and long-lasting osseointegration. The novel research directions to be addressed – determination of BG critical coating thickness, attainment of BG layer dissolution/tissue reconstruction equilibrium, tailoring of the surface energy targeting the augmentation of osseointegration, study of the synergy of various antimicrobial agents, or the preliminary studies regarding alkali-free BG films from innovative formulations – will work fluidly for the accomplishment of the project objectives. Another project priority is the creation of a critical mass of young researchers able to coherently implement complex themes, and to actively involve in national/international consortia for the development of the biomedical domain.
Read more
Field effect transistors based on new transparent heterostructures synthesized at low temperatures
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-1122
2015
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/projects/field-effect-transistors-based-new-transparent-heterostructures-synthesized-low
Abstract:
The main objective of the project is to manufacture transparent field effect transistors with superior performances, based on aluminum nitride gate dielectrics. Although aluminum nitride is a very promising material for such type of applications, its use as gate dielectric in transparent transistors is an international novelty. Therefore, this project can generate, by its implementation, a significant impact to the development of transparent electronics. The project proposal will entail complex and fluid research activities, from the synthesis of materials and their characterization in view of optimization, to the fabrication of high performing devices on both rigid and flexible substrates. In order to achieve transistors with an functional response superior to the one of the devices used currently in transparent electronics, the project team will employ a series of optimization solutions (testing new geometries, post-fabrication thermal treatments and various encapsulation solutions). Last but not least, the project will represent a great opportunity for the young project team to form a strong scientific nucleus, which, by using the complex infrastructure of the host institution, will be able to contribute to the progress of micro-nano-electronics, on both nationally and internationally level.
Read more
Temperature sensor based on GHz operating AlN/Si SAW structures
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0677
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); ROM-QUARTZ S.A. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.imt.ro/setsal
Abstract:
The main objective of this project consists in the manufacturing of the first temperature sensor based on a SAW type device on AlN/Si. The sensor is based on the variation of the SAW resonance frequency vs. temperature. The sensor will be characterized ”on wafer” in the 25-150 oC temperature range. The sensor structures mounted on a special ceramic carrier, provided with SMA connectors and cables, will be characterized in the 5-500 K temperature range inside a cryostat. We aim to obtain a sensitivity >75 ppm/oC (on-wafer measurements) and 60 ppm/ oC for measurements with connectors and cables, in the 23-150 oC temperature range.
The project corresponds to the world wide effort to obtain acoustic devices operating in the gigahertz frequency range, using wide band gap semiconductors (AlN, GaN). These materials have very good piezoelectric properties. High quality GaN and AlN layers grown or deposited on Sapphire SiC or Si substrate permits to use in the fabrication protocol nanolithography, micromachining techniques and monolithic integration. The advantage of using AlN for the SAW structure consist in the possibility to obtain a higher resonance frequency and a higher sensitivity for the sensor. The project has few objectives beyond the state of the art.
The main element will be a SAW structure on AlN/Si with the resonance frequency in the 6-9 GHz range. The highest resonance frequency obtained up to now for SAW structures on AlN/Si is 5.1 GHz and was reported by the IMT and INCD-FM groups, partners in this project, using an IDT structure with digits and interdigit spacing 300 nm wide. This project requires interdigitated transducers having the digit/interdigit spacing 80-150 nm wide, a challenge due to the major difficulties of the nanolithographyic process on materials like AlN or GaN. Up to now, the narrowest lines on AlN have been reported on an AlN/Diamond based SAW structure in 2012 (200 nm).
For the proposed sensor a „single resonator” structure will be developed. Compared with classical structures based on face-to-face resonators and delay lines, the single resonator structure offers few advantages: higher quality factor, lower losses and mainly, higher values for the sensitivity, as it was recently proved by IMT for GaN.
A two steps, low temperature, deposition process will be developed, for the synthesis of thin AlN films. The goal is to lower the FWHM of rocking curve at 1.5° for the AlN films deposited on Si.
There is a potential advantage of monolithic integration of the SAW based AlN temperature sensor in a CMOS ICs. AlN technology is CMOS compatible, due to its low deposition temperature. In such circuits fabrication protocols contain nanolithographic processes, therefore these processes for the sensor will not add significant costs.
The project consortium consists in four teams with excellent expertise and complementarity in the project topics. The IMT team has many contributions in the state of the art for acoustic devices on GaN and AlN, in nanolithography and microwave characterization. INCD-FM has an excellent expertise in high quality AlN films deposition. UPB has excellence expertise in design and modelling of high frequency devices and circuits. ROMQUARZ is the only Romanian enterprise with an authentiq experience in SAW type devices manufacturing on classical piezoelectric materials.They have been involved in SAW devices manufacturing on non-semiconductor materials (quartz, lithium niobate, etc) in the last 20 years.
Read more
Optimized pyroelectric materials through the polarization gradient concept and experimental model for a pyroelectric detector with potential for applications in monitoring high power/energy lasers.
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0470
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INTERNET S.R.L. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/projects/optimized-pyroelectric-materials-through-polarization-gradient-concept-and-experimental
Abstract:
The project aims to develop materials with optimized pyroelectric properties using the polarization gradient concept and develop integral pyroelectric detectors for the near infrared (700 nm) to THz (≤100 µm) wavelengths range. These detectors have potential application also in the detection of high power or high energy laser beams (e.g. the lasers of ELI-NP project). The materials to be used in this project are ferroelectrics with a perovskite structure such as Pb(Zr,Ti)O3 (PZT) or (Ba,Sr)TiO3 (BST) due to the fact that the transition temperatures can be modified by changing the Zr or Sr content. These materials will be combined in structures of multilayers with gradient in concentration and polarization in order to increase the figure of merit M given by the ratio between the pyroelectric coefficient p and the dielectric constant ε (M=p/ε).
The present project proposes a novel way of increasing the merit figure M by increasing the pyroelectric coefficient. This can be achieved by developing materials that exhibit a concentration gradient in the direction of the polarization, which introduces a succession of phase transitions at different temperatures, leading to a more abrupt variation of the polarization with the temperature and thus to a larger pyroelectric coefficient.
Another effect to turn to account is the temperature variation of the dielectric constant which can contribute to further increase the total pyroelectric coefficient. The temperature variation of ε can contribute to the pyroelectric signal if an electric field is applied to the ferroelectric material in order to maintain a stable polarization state, thus averting possible signal variations caused by the ambient temperature conditions.
The materials with gradient in concentration and polarization will be realized in bulk form, as ceramic wafers (25 mm minimum diameter and 6 mm thickness) by using the spark plasma sintering (SPS). Alternately, the ceramic technology coupled with classical sintering, or hot press, can be used. The sintering conditions will be optimized in order to obtain the best p/ε ratio. The selected material will then be used to build the active elements for the pyroelectric detection. In this respect, metallic electrodes will be deposited and one of them will be blackened in order to ensure a better absorbtion of the incident electromagnetic radiation. A novel approach is that carbon nanotubes are to be used for the blackening. This way the absorbtion coeficient can be increased close to 1. The active element will then be used to create pyroelectric detectors, including the electronics for signal processing and the sofware needed for PC display. Beside the mentioned ceramic materials, epitaxial multilayered structures with gradient in concentration and polarization will be realized and their pyroelectric detection properties will be investigated as well during the project.
The consortium is formed by 3 partners: coordinator of the project –CO is a national institute with experience in ceramic materials and pyroelectric detection; one university –P1 with experience in preparation of ceramic powders; one company –P2 specialized in signal procesing and different types of electrical measurements. CO and P1 will develop the active element for the pyroelectric detection and P2 will develop and test the experimental model of the system for pyroelectric detection including all the electronics and the sofware needed for the different types of applications for which the pyroelectric detector is developed by CO and P2: automatizations, non-contact measurements of temperature or monitoring of the high power/energy laser beams. The ultimate goals are to obtain: a technological process for obtaining the active element of pyroelectric detection, as well as two experimental models, one for the Pyroelectric Detector and one for a Pyroelectric Detection System used to detect high intensity laser beams.
Read more
Investigations on advanced dielectric materials and structures in Terahertz and millimeter waves
Call name:
Exploratory Research Projects - PCE-2012 call
PN-II-ID-PCE-2012-4-0654
2013
-
2016
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/node/4190
Abstract:
At the present, terahertz technology is certainly one of the most dynamic research fields with wide variety of applications: terabit wireless communication, spectroscopy, biology, medical sciences, food control, security systems, etc. The project aims to investigate advanced conventional as well as structured materials in Terahertz and millimeter wave range. On one hand, highly accurate characterization methods of complex perovskite dielectrics (bulk and thin films) with high values of the product between the quality factor and the frequency will be developed for millimeter wave and Terahertz range. The application of development methods to measure ferroelectric perovskites in Terahertz range is very important for such applications as tunable photonic crystal filters. On the other hand, numerical and experimental investigations on structured materials will allow the study of the Terahertz spoof surface plasmon-polaritons in new complex geometries. The electromagnetic simulation, fabrication and characterization of the proposed materials and structures will benefit of recent acquisitioned state-of-the-art equipment in the host institution. The final outcome of the project will consist in solution for an improved controlled of the electromagnetic radiation in millimeter wave and Terahertz range.
Read more
High efficiency electrospinning
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1017
2012
-
2016
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI (RO); UNIVERSITATEA BUCURESTI (RO); ADINA S.R.L. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/projects/high-efficiency-electrospinning
Abstract:
The main objective of the project is to develop a highly efficient alternative of the electrospinning method for preparing polymer nanofibers. The fabrication process we develop aims at using, instead of the classical spinnerets (syringes and pipettes), arrays of metallic micronic and submicronic tubules.
Secondary objectives will be the fabrication of functional metallic fibers, fabrics and products based on it for shielding applications and of complex fibers and fabrics for photovoltaic applications.
The process of electrospinning has numerous advantages. Properties of the fibers can be well controlled. The fibers are very thin and have a high length to diameter ratio, thereby providing a very large surface area per mass unit. A wide range of polymers can be processed in this manner including here natural polymers such as collagen, fibrinogen or polysaccharides. Is a method that allows one to deposit very thin polymer fibers, diameter down to few tens of nanometers.
Although the process is studied since long time ago, a scan through recent scientific literature presents the main shortcoming of the method, the low yield in terms of quantity of material produced.
Thus, the consortium approaches a problem of high technical and scientific interest, namely to develop an alternative to the method in order to increase the efficiency of nanofiber fabrication through electrospinning. We aim at replacing the classic syringe needle, pipette or other capillary with an array of metallic micrometer or submicrometer tubules prepared by a template approach.
The main objective of the groups involved in the present project is related to making the transition from the simple preparation of nanostructures towards fabricating functional nanostructures , namely of polymer, metallic and complex semiconducting fibers with high application potential. The research which will be performed is channeled in a direction strongly connected to the tendencies at international scale.
Read more
Biofunctionalization of 3D titanium implants with highly adherent bioactive glass films produced by magnetron sputtering: from research to production
Call name:
Projects for Young Research Teams - TE-2011 call
PN-II-RU-TE-2011-3-0164
2011
-
2014
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor (RO)
Project website:
http://www.infim.ro/node/3887
Abstract:
Bioactive glasses (BG) are osteoproductive-type inorganic materials which present the ability to form a bond with the living bone tissue and enhance the osteosynthesis process. There are still no commercial BG implant-type coatings because of their poor adhesion determined by the significant CTE mismatch between BG and Ti-based implant substrate. The recent progresses made on the synthesis/processing of BGs that allowed the formulation of new compositional systems with lower CTE and enhanced bioactivity reopened the issue of BG coatings as a viable biomedical solution for load-bearing applications.The project will propose magnetron sputtering as a solid deposition solution, aiming to create a new class of implants with extended life, which will not longer require reintervention. Solutions for improving the BG coating adhesion to the metallic substrate will be prospected. The implant coatings will be fully characterized by: FTIR, Raman, XPS, XRD, SEM-EDS,TEM, pull-out and nanoindentation tests. Their biofunctionality will be tested by in vitro tests in solutions that mimic the intercellular environment: the classic SBF ((ISO/FDIS 23317:2007) and the innovative test of DMEM cell culture media at 37°C and 5% CO2. Their citotoxicity, bioactivity and differentiation induction capacity will be comprehensively studied in vitro on a stem cells/osteoblast cell culture model.
Read more
Study of Induced Effects by Defects and Impurities on Optical, Electrical and Electronic Properties of Wide Band Gap Semiconductors
Call name:
Projects for Young Research Teams - TE-2011 call
PN-II-RU-TE-2011-3-0016
2011
-
2014
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor (RO)
Affiliation:
Project website:
http://www.infim.ro/projects/study-induced-effects-defects-and-impurities-optical-electrical-and-electronic-properties
Abstract:
The aim of this project is the analysis of wide band gap semiconductor (WBS) thin films by use of non-destructive characterization techniques: ellipsometry, XRD and luminescence. These materials have existing or potential applications in optics and/or electronics. WBS thin films will be obtained by use of different thin films growth methods: pulsed laser deposition, magnetron sputtering, sol-gel and direct growth from colloidal suspension. The influence of defects and impurities on optical, electrical and electronic properties of such materials will be analyzed. The results from presented optical studies will be verified by conventional electrical measurements and structural analysis by electronic microscopy.
The project is focused on 3 types of wide band gap semiconductors: zinc oxide (ZnO) pure or doped with different elements; zinc nitride (Zn3N2) and the intermediary phases during controlled oxidation; and aluminum indium nitride (AlxIn1-xN) pure and doped with Zn. One objective is to grow and to characterize the n-type semiconductors with reproducible properties.
The estimated results will bring new insights regarding the physics phenomena involved in the growth process and the material properties, essential for obtaining viable results. In addition, special activities will be included in the project concerning the correlation between the fundamental knowledge and practical necessities of electronics, and the standardization of the growth of thin films below 200C.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.7426, O: 493]