Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
Bogdan Florin
Craciun
-
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI"
Researcher
5
years
Web of Science ResearcherID:
AAS-9475-2020
Personal public profile link.
Expertise & keywords
Organic synthesis
organic compounds
Structure characterization
Frameworks
Compounds isolation
Polyethyleneimine
polyethyleneglycol
squalene
gene and drug delivery
non-viral vectors
Organic chemistry
Inorganic chemistry
Biochemistry
Analitical chemistry
Organometallic chemistry
Projects
Publications & Patents
Entrepreneurship
Reviewer section
BioMat4CAST Multi-Scale In Silico Laboratory for Complex and Smart Biomaterials
Call name:
HORIZON-WIDERA-2022-TALENTS-01-01
2022
-
2027
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI"
Project partners:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" ()
Affiliation:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" ()
Project website:
https://cordis.europa.eu/project/id/101086667
Abstract:
"The strategic objective of the BioMat4CAST project is to implement a structural change within in the scientific management paradigm of “Petru Poni” Institute of Macromolecular Chemistry (ICMPP), Iasi, Romania, by setting up a competitive research group in the field of computational chemistry under the supervision of an outstanding researcher manager in the field of computational chemistry, Prof Aatto Laaksonen (Arrhenius Laboratory, Stockholm University, Sweden).
The objectives of the BioMat4CAST project addresses directly to the targets of the Horizon Europe program: ""to support research organisations to attract outstanding researcher and/or innovator in the chosen scientific domain thus to achieve excellence on a sustainable basis"". The BioMat4CAST project results matches the Destination 2: Attracting and Mobilising the Best Talents of the Horizon Europe program.
The BioMat4CAST project will raise the RTD standards of ICMPP – as the first NE Romanian Region research center having a critical mass enabling it to spread excellence in the specific field of computational chemistry able to link the Romanian computational school to the World Association of Theoretical and Computational Chemists through on-going cooperation, partnership and shearing of know-how/technical expertise.
Read more
Innovative multifunctional, bioactive topical formulation for the management of malignant wounds
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2021-2193
2022
-
2024
Role in this project:
Key expert
Coordinating institution:
UNIVERSITATEA BUCURESTI
Project partners:
UNIVERSITATEA BUCURESTI (RO); SANIMED INTERNATIONAL IMPEX S.R.L. (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Affiliation:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Project website:
https://bios.unibuc.ro/Proiecte/proiect-pn-iii-p2-2-1-ped-2021-2193.html
Abstract:
Malignant fungating wounds (MFW) are incurable, severe, and debilitating conditions normally occurring in the last (six) months of oncologic patient’ life, affecting the overall quality of life and requiring appropriate palliative care to alleviate pain and suffering. MFW’s microbiome may influence the development and severity of wound symptoms, causing foul odors, peri-wound skin damage, inflammation, and ultimately, delays in the healing proliferative phase. ARGOS project is implemented by a consortium of two research institutions and one company with previous experience in developing collagen-based pharmaco-cosmeceutic products and is aiming to develop an innovative multi-purpose, bioactive topical formulation to assist the physical management of malignant fungating wounds, by addressing the microbiome-related symptoms such as pain, odor, and exudate. The proposed solution is based on collagen and inorganic - gold, silver and magnetic – nanoparticles functionalized with plant-derived bioactive compounds (such as polyphenols contained in Chelidonium majus L. and Tamarix gallica extracts, with previously demonstrated antioxidant, antimicrobial, antiproliferative, antiviral and immunomodulatory activity). Therefore, the main novelty of the proposed solution is that it provides not only a wide antimicrobial effect, but also anti-cancer activity and pro-healing properties on the site of malignant wounds. The physico-chemical, mechanical and biological properties of the collagen-based optimized product will be validated by standard protocols and the technological scaling documentation and argumentation of the investments required for in vivo tests will be elaborated (TRL4).
Read more
Squalenoylation and micellar encapsulation as an effective approach for enhancing the biological properties of the antitumoral and antimicrobial drugs
Call name:
P 1 - SP 1.1 - Proiecte de cercetare Postdoctorală - PD-2021
PN-III-P1-1.1-PD-2021-0606
2022
-
2024
Role in this project:
Project coordinator
Coordinating institution:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI"
Project partners:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Affiliation:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Project website:
https://icmpp.ro/projects/l1/about.php?id=49
Abstract:
The field of nanomedicine has gained significant attention in recent decades due to the possibility of the nanotherapeutics or nanoformulations to give a better treatment for a wide range of serious diseases (cancer, neurological disorders and cardiovascular pathologies).
The fundamental idea of Drug-ReSQue project proposal is to obtain novel nanotherapeutic systems with improved antitumoral and antimicrobial properties compared with currently marketed drugs, such as cytarabine and methotrexate, which possess antitumoral activity, or flucytosine and glycine-curcumin hybrid, known for their antimicrobial activity. The systems will be obtained by two methods: ‘squalenoylation’ and drug encapsulation into PEGylated squalene micelles. It should be noted that to our best knowledge, the chosen drugs were not used in other ‘squalenoylation’ studies and novel nanotherapeutics with improved biological properties will be obtained.
This project is based on the accomplishment of four major objectives which will be implemented within 24 months. The successful implementation of the project will be highlighted by dissemination of the project’s results in two scientific articles in prestigious Q1 or Q2 ISI journals and at 3 presentations at national or international scientific events. In addition, the project leader will enhance the national and international visibility of the present project proposal by developing a website where the project progress will be monthly updated.
Read more
Restore Her2 dependent sensibility using AXL inhibitors packed in pH dependent nanostructures
Call name:
EEA Grants - Proiecte Colaborative de Cercetare
EEA-RO-NO-2018-0246
2021
-
2024
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL REGIONAL DE ONCOLOGIE IAŞI
Project partners:
INSTITUTUL REGIONAL DE ONCOLOGIE IAŞI (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO); OSLO UNIVERSITETSSYKEHUS HF (NO)
Affiliation:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Project website:
https://www.nanoher2restore.ro/
Abstract:
This project (NANOHER2RESTORE) proposes to apply modular supramolecular assembly consisting of pH sensitive units, recognition moieties and functional molecules to build up therapeutic entities sensitive to the tumour microenvironment and to investigate mechanisms for targeted breast cancer treatment in vitro and in vivo.
Our concept is based on the utilization of the specific extratumoral pH values as trigger for the targeted localized delivery by nano modular assemblies. The pH dependent self-assembly of the modules is ensured by the presence of block copolymers able to self-assemble into bilayers or vesicles. Furthermore, increasing the hydrophilic volume fraction favors the formation of structures with greater interfacial curvature, such as cylindrical or spherical micelles. These nano/micro structures can be used to encapsulate therapeutics (HER2 blockers and AXL inhibitor, doxorubicine, etc.), to protect the therapeutic agent (upon injection into the body) and to improve circulation times, thereby increasing the amount of active drug that reaches the targeted site. Specific coupling will be used for targeting molecules (trastuzumab) in order to protect Her antigen recognition site and use this recognition to enhance distribution in tumor site, based on over expression of Her on cellular membranes. Once the nano carrier reaches its target site, the drug is released by stimulus-triggered changes to the micelle, passive EPR effect on vesicle nanostructure to accomplish its therapeutic goal. We will use the modified acidic microenvironment of the tumor to produce a structural change in the co-polymeric blocks leading to disorganization of micelle type nanostructures, leading to drug deployment of the desired drug. Axl inhibitors are targeting the Her2 pozitive breast cancer cells in an effort to block an escape mechanism after long standing Her blockade.
The advantage of this delivery method is that we target tumor tissue using pH variations in the microenvironment and concentrate in the same area a dual approach of the tumor cells with both Her2 antibodies (trastuzumab) which remains active on the copolymer branch, as well as an AXL inhibitor. Delievered in the same are they aim to reactivate the Her2 blockade efficacy and render breast cancer cells sensitive to trastuzumab.
Read more
Versatile molecular vectors with tailored carrying and actuating abilities, dedicated to gene and drug delivery in fight against cancer
Call name:
P 4 - Proiecte de Cercetare Exploratorie, 2020
PN-III-P4-ID-PCE-2020-1523
2021
-
2023
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI"
Project partners:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Affiliation:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Project website:
https://www.intelcentru.ro/tm-vector/index.php
Abstract:
Gene therapy represents nowadays one of the most challenging promises for the cure of cancer, rare, and severe diseases. The speed of the steps toward it strongly depends on the efficacy and reliability of the molecular tools involved in the manipulation (isolation, reconfiguration, multiplication) and vehiculation (native state preservation, dense packaging, targeted and “stealth” delivery, local protection) of the nucleic acids.
The main objective of TM-Vector project is to develop a highly reproducible macromolecular edifice capable to function as a cooperative carrier for nucleic acids, characterized by the ability to be post-decorated with biochemical and / or pharmacologic active molecules, by virtue of dynamic processes of selective affinity of host-guest type. The particular architecture of the carrying vector will offer three unique functional properties, representing our original contribution to the practice of nucleic acid vectorization: (i) the ability to target various cell receptors; (ii) the possibility to concomitantly vectorize several types of active molecules (e.g. nucleic acid molecules and pro-drug molecules); (iii) the capacity to selectively attach molecules having neat different volumes and conformations.
TM-Vector project could have societal impact, contributing to the improvement of the quality of life of sufferers. The applied research directions could also contribute to the technology of gene and drugs carriers produced at biopharmaceutical scale.
Read more
Mimicking living matter mechanisms by five-dimensional chemistry approaches
Call name:
P 4 - Proiecte Complexe de Cercetare de Frontieră
PN-III-P4-ID-PCCF-2016-0050
2018
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI"
Project partners:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO); INSTITUTUL DE BIOLOGIE SI PATOLOGIE CELULARA ,,NICOLAE SIMIONESCU'' (RO); CENTRUL DE CHIMIE ORGANICA AL ACADEMIEI ROMANE "C.D.NENITESCU" (RO)
Affiliation:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Project website:
http://www.intelcentru.ro/5D-nanoP/
Abstract:
Mimicking the living matter mechanism of cooperation by complementarity represents one of the most challenging tasks of supramolecular chemistry. For now the solution consists in using particularly designed molecular unimers, endowed with the necessary amount of chemical information.
The 5D-nanoP project is dedicated to interfacing the fundamental research area of constitutional dynamic chemistry with the practical approaches of medicinal chemistry and biomedical applications. In the spirit of a metaphor of Jean-Marie Lehn (Nobel Prize in Chemistry, 1987), the project aims to materialize the concept of 5D chemistry in designing, synthesizing, characterizing, and using molecules with conditional affinity, to build versatile supramolecular nanoplatforms able to vectorize compounds of pharmaceutical or biochemical relevance, and genetic actuators, all of them involved in physiologic and pathologic processes at cell- and tissue-level.
The project will add the layer of 5D chemistry over the backgrounds of molecular assembling line techniques to produce particulate nanoplatforms, self-assemblable in the virtue of the chemical information stored by the designed unimer molecules. Two modern techniques of building dynamic chemical structures will be considered: (i) the use of self-immolative linkers, and (ii) the space stepwise and time phased (microfluidic) assisted synthesis. To prove the applicability of the produced nanoplatforms, an ex vivo cell cultivation system will be developed to emulate tissue/tumor niches.
Eight teams will be involved in the 5D-nanoP project to cover the main addressed research areas: (i) the in silico molecular design, (ii) the development of a unimers chemical library, (iii) the development of a molecular assembling line, (iv) the conjugation of the developed platforms with chemical species of biomedical interest, (v) the build of ex vivo emulating niches, and (vi) the bio-oriented assessment of nanoconstructs efficacy.
Read more
Intelligent therapies for non-communicable diseases based on controlled release of pharmacological compounds from encapsulated engineered cells and targeted bionanoparticles
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0697
2018
-
2021
Role in this project:
Coordinating institution:
INSTITUTUL DE BIOLOGIE SI PATOLOGIE CELULARA ,,NICOLAE SIMIONESCU''
Project partners:
INSTITUTUL DE BIOLOGIE SI PATOLOGIE CELULARA ,,NICOLAE SIMIONESCU'' (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Affiliation:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Project website:
http://www.icbp.ro/static/en/en-networking_grants-grants-national_grants/intera.html
Abstract:
Non-communicable diseases (atherosclerosis, diabetes, obesity), a major cause of mortality, are characterized by associated inflammatory processes. The complex project INTERA aims to develop innovative therapeutic methods to ameliorate the pathological progression by reducing the inflammatory process. The multidisciplinary studies proposed by INTERA can create and define new nano- or micro-medical devices usable for smart and innovative anti-inflammatory therapies. INTERA includes 4 projects: (1) Encapsulation of genetically manipulated eukaryotic cells for controlled release of pharmacologically active products; (2) Development of a 3D platform designed for pre-clinical drug testing composed of cells incorporated into three-dimensional bio-matrices; (3) Intelligent nanobioparticles designed for bioactive compounds vectoring to pathological sites for vascular inflammation targeting. (4) Polymeric conjugates for efficiently inducing the expression of genes of interest with applicability in cellular therapy. The consortium consists of 4 partner research units - two institutes of the Romanian Academy (IBPCNS, ICMP), a university (UPB) and a national CD Institute (INCDFM) with good territorial coverage (Bucharest-Ilfov-Iasi). Predicted Indicators: 10 new R & D jobs, 8 ISI articles, 4 patent applications, 8 new technologies, 7 new service offers posted on the ERRIS platform. Institutional development: the new competences and the improvement of existing ones in partner units will attract the attention of the economic environment towards a better correlation of scientific and economic interests and better valorization in the field of drug science. From a social point of view, institutional development will lead to lowering the cost of these pathologies through new therapeutic approaches, more accessible to the population and hence, improving the quality of life.
Read more
ANTITUMORAL THERANOSTIC PLATFORMS BASED ON CARBON DOTS AND POLYMER MATRICES
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0083
2018
-
2021
Role in this project:
Coordinating institution:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI
Project partners:
UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" IAŞI (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO); INSTITUTUL REGIONAL DE ONCOLOGIE IAŞI (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU FIZICA TEHNICA-IFT IASI (RO)
Affiliation:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Project website:
http://www.cercetare.icpm.tuiasi.ro/proiecte/TERADOT/
Abstract:
The TERADOT consortium will implement this project with the aim of reaching its strategic objective: the consolidation of the consortium scientific and technical competencies (in particular those of the P3 partner with relaunch potential) in the field of econanotechnologies and advanced materials by supporting / developing the existing research competences and the transferability of its research results. The TERADOT Consortium is an alliance that will devote its efforts to capitalize the potential of nanotechnologies by creating new teranostic platforms based on Carbon Dots (CDs) in order to radically change the proceedings to diagnose and treat cancer. Building on the significant preliminary results obtained by the project's members, the consortium represents a systematized initiative, comprising four public sector institutions, having the potential to be expanded with private-sector entities, designed to accelerate the application of these new concepts of cancer diagnosis / treatment. The project consists of three distinct subprojects aiming at: 1. Obtaining and testing of some CDs-type nanostructures starting from imidic precursors, suitable as teranostic investigation / anti-tumor treatment platforms; 2. Obtaining and testing of polymeric biocomposites containing imidic CDs, suitable as teranostic investigation / anti-tumor treatment platforms; and 3. Developing a pilot-scale process for synthesizing CD-type nanosciences for medical applications. The TERADOT project proposes to achieve these objectives by accomplishing several specific output indicators, of which the most important are: the employment of eight young researchers, obtaining 4 new products, 1 new technology for CDs preparation, minimum 8 articles in high impact journals, 5 patent requests (4 national and 1 international) which will further facilitate the collaboration with economic entities as potential beneficiaries.
Read more
Dynamic Constitutional Platforms for Targeted Drug Delivery
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-1180
2018
-
2020
Role in this project:
Coordinating institution:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI"
Project partners:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Affiliation:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Project website:
http://www.intelcentru.ro/DynaCoPlat/home
Abstract:
The next level in Drug Discovery is the easy building and self-generation of multifunctional nanostructures from commercially available or “easy to prepare” units, which will further self-assemble in a complex, tunable and multifunctional materials, suitable for very specific targeted drug delivery. In this regard, DynaCoPlat project’s main objective is to create dynamic nanoplatforms for developing dynamic systems for enhanced multivalent biorecognition with applications in targeted drug delivery. Project’s subject “the development of efficient nucleic acid targeted delivery systems” addresses the thematic priorities of the National Development Plan 2014-2020 programs (PN III) and Horizon 2020 strategy. The project will adopt modern synthetic pathways for preparing dynamic nanoplatforms with self-assembly properties based on dynamic chemistry and combinatorial methodology. The simplicity of the synthetic constitutional strategy using accessible and simple building blocks for facile self-generated nanoplatforms, presenting synergistic DNA and cell membrane affinities, can be considered as a valuable path toward the systematic discovery of active delivery systems. An important issue we aim to address is establishing a methodology for labelling of nanoplatforms with targeting molecules and achieve successful targeting property via introduction of selective cellular markers, thus increasing the efficacy and reducing the overall toxicity of therapeutic agents. On the other side, the STRATEGIC OBJECTIVE of DynaCoPlat project is the formation and consolidation of a young multidisciplinary team of researchers with complementary knowledge and experience, able to increase their scientific visibility by publishing the results in high impact journals and application to competitions within the national and European Framework (H2020, Era-Net, Euronanomed, etc.).
Read more
SupraChem Lab - Laboratory of Supramolecular Chemistry for Adaptive Delivery Systems - ERA Chair initiative
Call name:
P 3 - SP 3.6 - Premierea participării în Orizont 2020
PN-III-P3-3.6-H2020-2016-0011
2016
-
2020
Role in this project:
Coordinating institution:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI"
Project partners:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Affiliation:
INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO)
Project website:
http://www.intelcentru.ro/suprachem_lab/PNIII/
Abstract:
The SupraChem Lab - Support Project aaims to complements the European funding for the WIDESPREAD 2-2014 project: ERA CHAIR, no. 667387: SupraChem Lab - Laboratory of Supramolecular Chemistry for Adaptive Delivery Systems ERA Chair initiative Project.
The Orizont 2020 project started in July 2015 and aims to create a team to conduct advanced research on supramolecular chemistry. The SupraChem Lab project benefits from the scientific support of several high-level chemists, including Nobel Prize-winning Professor Jean-Marie Lehn in 1987 and is considered the founder of the global supramolecular chemistry school.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.5416, O: 275]