Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
2010
Bogdan
Cozar
Senior Researcher
Senior Researcher
-
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Researcher
9
years
Web of Science ResearcherID:
C-7049-2012
Personal public profile link.
Curriculum Vitae (29/10/2019)
Expertise & keywords
AFM
Raman spectroscopy
nanolithography
SERS
Raman
SERS
AFM
FTIR
Biomedical
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Pathogenic microorganisms’ rapid detection and identification using high sensitive Raman spectroscopy
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-0862
2015
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://www.itim-cj.ro/PNCDI/ru381/
Abstract:
The bio-sensing for bacteria detection is currently explored by using various sensing materials and approaches but it is still a challenge to find an alternative to the conventional protocols, based on microorganisms’ cultivation. This project proposal provides an ultrasensitive and selective, but simple, rapid and inexpensive bacteria detection and identification method by using a receptor-free and innovative immobilization principle of the biomass. Raman spectroscopy, which combines the selectivity of the method with the sensitivity of the surface-enhanced Raman scattering effect (SERS), is used in correlation with Principle Component Analysis (PCA) in order to develop biosensors for pathogenic microorganisms. Most common pathogenic bacteria will be tested by applying an original immobilization protocol and the in situ synthesis method of the SERS-active nanostructures. The specific molecular information gathered from the spectroscopic data will be uploaded and analyzed by means of advanced statistical methods, with the final goal of creating an appropriate protocol which will be used on complex biological samples. The rapid pathogens identification and differentiation between multiple species, down to strain level will be carried out by means of SERS-PCA bio-sensing. Furthermore, the efficiency of multiple classes of antibiotics on bacteria viability will be investigated by SERS in order to obtain rapid and precise diagnostic and targeted treatment.
Read more
Rational design and generation of synthetic, short antimicrobial peptides. Linking structure to function
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 1
PN-II-PT-PCCA-2011-3.1-0595
2012
-
2016
Role in this project:
Coordinating institution:
UNIVERSITATEA "ALEXANDRU IOAN CUZA" IASI
Project partners:
UNIVERSITATEA "ALEXANDRU IOAN CUZA" IASI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH (RO); UNIVERSITATEA BABES BOLYAI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://www.science.research.uaic.ro/biopep/
Abstract:
Antimicrobial peptides (AMPs) are an integral part of the immune system and protect a host from invading pathogenic bacteria. To overcome the problem of antimicrobial resistance, AMPs are being considered as potential alternatives for antibiotics. Although over 1000 AMPs have been isolated and characterized from various hosts, only limited successes have so far been achieved in clinical trials. The major hurdles for converting them into drugs lie in the high cost of production, toxicity to host cells, and susceptibility to proteolytic degradation. Therefore, a better understanding of the structure–activity relationships of AMPs is required to facilitate the design of novel antimicrobial agents. Herein we plan to focus our effort on designing and optimizing novel short, cationic amphiphilic peptides. We will undertake rational design, synthesis, and extensive testing of a series of short cationic peptides, we envision proteolityc and salt resistant. They will be made of a limited set of L- and D-aminoacids based on an elementary amphipathic templates of up to to 11 aminoacids, searching for the minimum number of aminoacids and optimal architecture able to confer the peptide optimal lytic activity and specificity against various pathogens. In order to enhance antimicrobial activity with no additional hemolytic activity, peptide synthesis will be considered by using non-natural amino acid analogs that will substitute hydrophobic residues leucine, isoleucine and phenylalanine. This group of peptides will be designed and synthesized with shorter sequence and simpler molecular structure and could be easily modified upon a particular requirement. The structural simplicity also offer technological advantages for mass production and purification.
Read more
STRUCTURAL CHANGES AND (SUB)PICOSECOND DYNAMICS IN DNA MOLECULES PROBED WITH ULTRASENSITIVE RAMAN SPECTROSCOPIC TECHNIQUES
Call name:
Exploratory Research Projects - PCE-2012 call
PN-II-ID-PCE-2012-4-0115
2013
-
2016
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M
Project partners:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO)
Project website:
http://www.itim-cj.ro/PNCDI/idei54/index.htm
Abstract:
The general aim of this project refers to the study of polymorphic structures characterizing DNA molecules, and also to the elucidation of the rapid (sub)picosecond dynamics in nucleic acids, particularly, in conditions of physico-chemical parameters relevant for their biological function. Investigation of structural changes induced in a natural DNA recognition site (LacDNA), in the presence and absence of divalent metal ions, by changing the pH, will provide data about protonation dependent opening of AT base pairs, changes the protonation of GC base pairs and interactions of DNA with divalent metal ions. UV resonance Raman spectroscopy (UV RRS) will be used for this study. Besides, identification of the Raman FWHHs (full-widths at half height) and investigation of the molecular relaxation times of DNA structural subgroups, based on different Raman techniques, is considered. Also, structural markers for different types of plant nucleic acids will be established, using nobel metal nanoparticles and surface-enhanced Raman spectroscopy (SERS), as an ultrasensitive method. Spectra-structure correlations in the wavenumber region describing nucleoside conformation, backbone geometry and PO2- interaction (600-1150 cm-1) of DNA molecules will be presented. Also, wavenumber range corresponding to the base electronic structures and base pairing (1200-1600 cm-1) is taken into account.
Read more
Ion sensing and separation through modified cyclic peptides, cyclodextrins and protein pores
Call name:
Complex Exploratory Research Projects - PCCE-2011 call
PN-II-ID-PCCE-2011-2-0027
2012
-
2016
Role in this project:
Coordinating institution:
“Alexandru Ioan Cuza” University
Project partners:
“Alexandru Ioan Cuza” University (RO); National Research and Development Institute of Isotopic and Molecular Technologies (RO); “Babes-Bolyai” University (RO); “Horia Hulubei” National Institute for Physics and Nuclear Engineering (RO); “Carol Davila” University of Medicine and Pharmacy (RO)
Affiliation:
National Research and Development Institute of Isotopic and Molecular Technologies (RO)
Project website:
http://science.research.uaic.ro/biosens/
Abstract:
Development of nanostructures capable of detecting and separating individual molecules and ions has become an important field of research. Particularly, protein-based nanostructures are attractive due to their ability for tunable molecular recognition and ease of chemical modification, which are extremely important factors on various applications. In this project, self-assembly functionalization will be approached, aimed at providing an efficient design for molecular recognition, ion sensing and separation, through new host-guest chemical methodologies, bio-nanofabrication and physicochemical manipulations methods. New crown ether type macrocycles, functionalized cyclodextrins and cyclic peptides will be engineered to work as specific molecular adaptors for the -hemolysin protein, giving rise to hybrid molecular superstructures possessing ion sensing and selectivity properties. The size and functionality of the macrocycles are targeted to ensure the anchorage in the pores and the selectivity of specific host-guest complexation processes. A surface detector array device suitable for use with a biosensor is envisioned, through ink printing nanotechnologies. The device architecture will be formed of a substrate having a surface defining a plurality of distinct bilayer-compatible surface regions separated by one or more bilayer barrier regions. Custom designed nanoscale bilayers containing selected receptors through cyclodextrins derivatives and macrocyclic peptides, self-assembled on different micro-nano arrays surfaces (polymers, Au or Si) will be fabricated. Further engineering of such functionalized nanomaterials based on molecular recognition and host-guest methodologies, in conjunction with flexible and mechanically robust enough substrate platforms, have the great potential for applications such as separation of nanoparticles, sensors, drug delivery, removal of heavy metals from aqueous solutions and chiral separation.
Read more
BIOFUNCTIONAL NANOPARTICLES FOR DEVELOPMENT OF NEW METHODS OF IMAGING, SENSING, DIAGNOSTIC AND THERAPY IN BIOLOGICAL ENVIRONMENT (NANOBIOFUN)
Call name:
Complex Exploratory Research Projects - PCCE-2008 call
PN-II-ID-PCCE-2008-0129
2010
-
2013
Role in this project:
Coordinating institution:
UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA, CENTRUL DE NANOSTIINTE SI NANOTEHNOLOGII
Project partners:
UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA, CENTRUL DE NANOSTIINTE SI NANOTEHNOLOGII (RO); UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA, CENTRUL DE BIOLOGIE MOLECULARA (RO); UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA, CENTRUL DE MATERIALE AVANSATE SI TEHNOLOGII (RO); UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA, LABORATOR DE STRUCTURI MOLECULARE SI MODELLING (RO); UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA, CENTRUL DE BIONANOSTRUCTURI SI SISTEME MOLECULARE COMPLEXE (RO); UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA, LABORATOR DE MODELARE COMPUTATIONALA A SISTEMELOR NANOSTRUCTURATE (RO); UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA, LABORATOR DE NANO-ALOTROPI AI CARBONULUI (RO); UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA, LABORATOR DE ELECTROCHIMIE SI CHIMIE SUPRAMOLECULARA (RO)
Affiliation:
UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA, CENTRUL DE BIONANOSTRUCTURI SI SISTEME MOLECULARE COMPLEXE (RO)
Project website:
http://www.phys.ubbcluj.ro/~dana.maniu/Web_ID_PCCE/
Abstract:
THE NANOBIOFUN PROJECT BRINGS TOGETHER EXPERTISES FROM 8 RESEARCH CENTERS IN PHYSICS, CHEMISTRY AND BIOLOGY TO ADDRESS THE DEVELOPMENT OF INNOVATIVE METHODS OF MOLECULAR SENSING, IMAGING, DIAGNOSTIC AND THERAPY IN BIOLOGICAL SYSTEMS BY COMBINING THE UNIQUE PHYSICAL PROPERTIES OF NOBLE-METAL NANOPARTICLES (NPS) WITH THEIR CHEMICAL SPECIFICITY AND EASY WAY OF BIOFUNCTIONALIZATION. KEY SCIENTIFIC ELEMENTS OF THE PROJECT ARE (1) TO PROVIDE A BIOLOGICAL FUNCTION ( CELL TARGETING) TO AN ARTIFICIAL NANO-OBJECT IN ORDER TO TACKLE A SPECIFIC BIOLOGICAL ISSUE, AND (2) TO FABRICATE TAILORED NANO-OBJECTS ABLE TO TRANSFER / INDUCE A PHYSICAL SIGNAL ( LIGHT OR ELECTRIC CURRENT) TO A BIOLOGICAL ENTITY (BIOMOLECULE AND CELL) IN ORDER TO PROBE ITS STRUCTURE AND PROPERTIES IN A CONTROLLED MANNER. SPECIFICALLY, THE PROJECT ADDRESSES THE DEVELOPMENT OF PLASMON-RESONANT NPS AS NEW OPTICAL LABELS FOR BIOLOGICAL MOLECULES, MEMBRANE AND CELLS AS WELL AS MULTIFUNCTIONAL AGENTS FOR CANCER DIAGNOSTIC AND THERAPY. THE PROJECT WILL TARGET THE FABRICATION OF GOLD NPS AND HYBRID METAL/POLYMER/SILICA/ STRUCTURES OF SPECIFIC SHAPE, SIZE (2-200 NM) AND DESIRED OPTICAL PROPERTIES AND REALIZE THEIR CONJUGATION WITH RELEVANT (BIO)MOLECULES / PROTEINS / DNA / BIOPOLYMERS. AS A MAJOR RESULT OF THIS PROJECT WILL TO DEMONSTRATE AN ORIGINAL APPROACH IN CANCER THERAPY GIVEN BY THE ABILITY OF GOLD NANOPARTICLES TO MEDIATE HYPERTHERMIA INDUCTION TO KILL CANCER CELLS UPON LASER IRRADIATION, THEREBY FUNCTIONING AS SELECTIVE THERMAL NANO-SCALPELS. THE PROJECT WILL CONTRIBUTE ON THE INVESTIGATION OF BIOLOGICAL EFFECTS OF BIOCONJUGATED GOLD NANOPARTICLES ON VARIOUS NORMAL AND TUMOR CELLS CULTURES.AN IMPORTANT OUTCOME OF THIS PROJECT WILL BE THE PRODUCTION OF COST EFFECTIVE, ULTRA SENSITIVE, REPRODUCIBLE AND STABLE NANOSTRUCTURED SUBSTRATES FOR SURFACE-ENHANCED SPECTROSCOPY AND ELECTROCHEMICAL SENSORS. BESIDES THE SCIENTIFIC GOALS, TRAINING AND EDUCATION WILL BE ALSO KEY RESULTS OF THE PROJECT.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.4737, O: 190]