Log In
Sign Up
Romania
Citizenship:
Moldova, Republic of
Ph.D. degree award:
2006
Mr.
Aurelian Catalin
Galca
Ph.D.
Senior Researcher Rank 1
-
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Researcher | Scientific reviewer
Senior researcher rank I at NIMP, graduated the Faculty of Physics at University of Bucharest (UB) (2000), MSc degree in Solid State Physics (UB) (2002), and a PhD degree obtained at University of Twente, the Netherlands (2006). Work experience: MESA+ Institute for Nanotechnology; NIMP; postdoctoral scholarship (2011) at Université Rennes 1. Main areas of interest/expertise: non-destructive characterization (ellipsometry, XRD, conventional UV-Vis and infrared spectroscopy, Raman Spectroscopy) of nanoscaled materials; preparation of dielectric/semiconductor/metallic thin films by physical vapour deposition methods; development and testing of optoelectronic devices. Publications: 127 articles published in Web of Science® journals with impact factor; H-index: 23; Citations (without self-citations): over 1000. Expert Evaluator for EC (H2020), ANR (France), CNR (Italy), AUF, Romanian agencies. Patents: 3 US awarded and several other applications. https://infim.ro/@galca/
>20
years
Web of Science ResearcherID:
2858295/aurelian-catalin-galca/
Personal public profile link.
Curriculum Vitae (09/11/2024)
Expertise & keywords
Ellipsometry
Coherent X-ray diffraction
Semiconductor physics
Optical spectroscopy
Magneto-Optics
Sol-gel
Multifunctional materials processing and characterization
Ultrahigh vacuum deposition of thin films
Materials science and engineering (metals, ceramics, composites, biomaterials)
Electric / electronic devices
Colloid chemistry
Solar cells
Thin films based -transparent electronics devices
Photovoltaics
Nanophysics
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Quasi-1D materials for advanced thin-film photovoltaics
Call name:
PNCDI IV, PN4GENERIC-ERANET-2023
ERANET-M-3-ERANET-LightCell
2024
-
2026
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); Technical University of Denmark (DK); LightNovo APS (DK); Tallinn University of Technology (EE); DGIST (KP); ULTECH (KP)
Affiliation:
Project website:
Abstract:
LIGHTCELL ims at developing innovative architectures for thin-film photovoltaics (TF-PV) utilizing inorganic, environmentally stable (Sb2X3, X=S, Se) materials and sustainable fabrication processes with reduced energy consumption. Sb2X3 can be synthesized in a quasi-one-dimensional (quasi-1D) form, addressing the main factors limiting the efficiency of TF-PV, i.e., recombination of the photogenerated carriers at the grain boundaries. A multidisciplinary consortium of academic and industrial partners aims at developing a scalable technology of sustainable, cost-efficient, and lightweight PV. For faster feedback loop to synthesis, a new tool for the rapid and non-destructive mapping of 2D and 3D crystallographic orientation of quasi-1D materials will be developed. The PV technology developed in LIGHTCELL will be validated in demonstrators by the industrial partners, targeting lightweight building-integrated PV applications, contributing to sustainable green energy production.
Read more
Science and Engineering of Kesterites for the Next Generation of Solar Cells
Call name:
P 4 - Proiecte de Cercetare Exploratorie, 2020
PN-III-P4-ID-PCE-2020-0827
2021
-
2023
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://infim.ro/en/project/kestercell-2/
Abstract:
The project aims to develop by concentration engineering Cu2ZnSn(Ge)S(Se) thin films using a novel simultaneous co-deposition using magnetron sputtering from 3 up to 6 different targets, revealing original scientific insights regarding the structural, optical and electrical properties of kesterites and the photovoltaic characteristics of corresponding solar cells in correlation with composition, and producing by interface engineering (front and contact innovations) new solar cells with efficiency near or above the present world record.
Read more
Functional 2D materials and heterostructures for hybrid spintronic-memristive devices
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
ERANET-M.-2D-SPIN-MEM
2019
-
2023
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); Catalan Institute of Nanoscience and Nanotechnology (ES); Institute of Optical Materials and Technologies (BG); Institute of Solid State Physics (BG)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
https://infim.ro/en/project/functional-2d-materials-and-heterostructures-for-hybrid-spintronic-memristive-devices/
Abstract:
Magnetic memories (MRAM) and memristors are amongst the most promising technologies for emerging nonvolatile memories. MRAM implement concepts developed within spintronics, which uses spin –rather than electrons– to transfer and store information. In this project we will explore hybrid spintronic-memristor devices in graphene-based heterostructures comprising 2D transition metal dichalcogenides (TMDs) and less explored group-IV monochalcogenides (IV-MCs) materials. We will perform the first ever evaluation of the potential of 2D IV-MCs as memristors and implement graphene-based heterostructures with enhanced spin-orbit coupling using both TMDs and IV-MCs. With these heterostructures we aim at controlling graphene’s spin properties by changing the memristive setting of the chalcogenides. They will be made and characterized such that new multifunctional 2D systems are generated for applications in ultradense and ultralow power nonvolatile memories and neuromorphic computer architectures.
Read more
Controlling the electronic properties in heterostructures based on ferroelectric perovskites: from theory to applications
Call name:
P 4 - Proiecte Complexe de Cercetare de Frontieră
PN-III-P4-ID-PCCF-2016-0047
2018
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/control-of-electronic-properties-in-ferroelectric-perovskite-heterostructures-from-theory-to-applications/
Abstract:
The main objective of the project is to obtain ferroelectric materials with controlled electronic properties at the same level as this properties are controlled in Si. This will be realized by hetero-valent doping, correlated with stress engineering and band gap engineering without affecting, as much as possible, the ferroelectric properties. The main objective is complex and ambitious because, up to date, there was no experimental demonstration that it possible to obtain n or/and p type conduction in epitaxial ferroelectrics. The successful achievement of this objective will open a new domain, that of ferroelectric electronics or ferrotronics, by producing electronic devices of p-n homo-junction type or junction transistors with ferroelectric materials. Two types of materials are envisaged, namely lead titanate-zirconate (PZT with tetragonal structure and a mixed bismuth ferrite (BFO) with bismuth chromit (BCO). In the first case the heterovalent doping will be studied on Pb or Zr/Ti sites with the aim to obtain n and p type conduction. The final goal is to produce a p-n homo-junction based on epitaxial PZT films. In the second case band gap engineering will be tested by varying the Fe/Cr content, and the dominant conduction mechanism will be identified, the goal being to use the material in photovoltaic applications. The activities will contain: theoretical studies regarding the relation between dopants, electronic properties and the ferroelectricity, including self-doping effects or electrostatic doping; target preparation for deposition of thin films; epitaxial growth of the film; characterization activities of the structure and physical properties. Not only classic doping in the target is envisaged but also doping during the epitaxial growth. The consortium is composed of 4 teams from three different institutions, including a number of 14 young researchers full time equivalent.
Read more
High-k Nanoparticle Multilayer Dielectrics for Nanoelectronics and Energy Storage Applications
Call name:
P 4 - Proiecte Complexe de Cercetare de Frontieră
PN-III-P4-ID-PCCF-2016-0175
2018
-
2022
Role in this project:
Coordinating institution:
UNIVERSITATEA "ŞTEFAN CEL MARE" DIN SUCEAVA
Project partners:
UNIVERSITATEA "ŞTEFAN CEL MARE" DIN SUCEAVA (RO); UNIVERSITATEA "ALEXANDRU IOAN CUZA" IASI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://nanomat.usv.ro/pagina-05-5-a.php
Abstract:
Dielectrics are insulating materials that have been the workhorse in computing and electronics. Since the invention of the transistor and the integrated circuit the modern complementary metal oxide-semiconductor (CMOS) technology heavily relied on rigid SiO2/Si substrates and the relentless downscaling of the size of the transistor has been the core driver for the information revolution. However, to meet the increasing need for miniaturization, low power function and portability in both the civilian and military sector, discrete electronic components, such as capacitors, resistors, inductors and transistors should be replaced by embedded circuitry. An important roadblock in the development of energy storage and memory/switching devices with increased efficiency and range of operation is the rather low dielectric permitivity and carrier mobilities of organic polymer materials. The four research teams of the present consortium, led by A. Rotaru (USV, Suceava), L. Mitoseriu (UAIC, Iasi), I. Pintilie (NIMP, Bucharest) and A. Marcu (INFLPR, Bucharest), propose to demonstrate proof concept of manufacturable nanocrystal film structures with a high dielectric permitivity with direct applications in high energy density storage and low-voltage modulated field effect transistors and logic devices. In addressing these challenges we will use complementary expertise in materials synthesis and characterization, device design and testing with the potential of disruptive innovation in flexible electronics.
Read more
Intrinsic properties in microwave dielectric materials investigated by terahertz time-domain spectroscopy
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-1711
2018
-
2020
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/intrinsic-properties-in-microwave-dielectric-materials-investigated-by-terahertz-time-domain-spectroscopy
Abstract:
The main goal of the project is the investigation of extrinsic sources that degrade the complex permittivity of low-loss dielectrics/ ferroelectrics in microwaves, millimeter-waves, and submillimeter-waves. The studies will be focused on the broad-band frequency behavior of bulk dielectrics (titanates, tantalates, niobates) and thin/thick film ferroelectrics (barium tinanate-based films) with different microstructures. In this sense, samples will be prepared by using several experimental techniques (conventional ceramic technology, spark plasma sintering, radio frequency–magnetron sputtering, and pulsed laser ablation deposition). Apart of usual structural and morphological characterizations (X-ray diffraction, electron microscopy), the extrinsic contribution to the complex permittivity will be investigated with following innovative techniques: terahertz time-domain spectroscopy, split ring resonator, quasi-optical free-space measurements, and spectroscopic ellipsometry. It is aimed to solve through the analysis of the synthesis - microstructure - properties cycle a very important scientific and applied problem of national and international interest. This knowledge will allow to achieve the intrinsic limit of dielectric properties of materials with low-loss microwaves, millimeter-waves, and submillimeter-waves.
Read more
A map for ovonic threshold switching materials
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-1997
2018
-
2020
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/a-map-for-ovonic-threshold-switching-materials-amos/
Abstract:
AMOS aims to build a map for the discovery of novel chalcogenide materials with ovonic threshold switching (OTS), enabling the creation of high density crossbar memory arrays. OTS is a volatile electrical characteristic of a chalcogenide material, which can rapidly swap from a low to a high conductivity state, by applying a voltage that exceeds the threshold voltage. First, a database of materials properties, using a combination of computed and measured data will be constructed. Atomic properties such as electronegativity, orbital radii and bond enthalpies will be used to compute hybridization, ionicity and glass transition temperature, whereas measured data will be generated by combinatorial deposition and thorough physical characterization of thin films to evaluate the band gap and crystallization temperature. This database will be visualized as a map. Statistical methods will be employed for the systematic identification of new OTS materials with specific properties. Selected materials from the predicted OTS class, belonging to binary and ternary chalcogenide systems, will be used to build test devices by photolithography. From the evaluation of their current-voltage behavior, the OTS will be experimentally verified. Well established sub-threshold conduction models will be applied in order to extract material properties, such as trap height and density of defects in the band gap. The interplay between the trap density and trap depth in chalcogenides could be the key for designing OTS materials with application-specific electrical characteristics. The rational, data-driven search for materials has the potential to mitigate the costs, risks, and time involved in the current trial-and-error approaches. Systematic exploration of the materials space can significantly accelerate the discovery of new chalcogenide materials and contribute to solving current data storage needs.
Read more
Synergy of antimicrobial agents incorporated in durable bio-glass coatings for endosseous implants
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-1501
2018
-
2020
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/synerglass/
Abstract:
Nowadays, antibiotic resistance becomes an important issue; as bacterial strains resistant to all known antibiotics appear, we are entering the “post-antibiotic era”. Acute complications emerge after implant surgery, as trauma will weaken the local immune response and allow pathogens to adhere and rapidly evolve within the implantation site. Severity increases in dentistry, where one cannot achieve an oral aseptic environment during implantation.
Hence, the project targets to unveil routes towards the synergic coupled effect of antimicrobial oxide agents (i.e. Ga2O3, CuO, Fe3O4, Ag2O), with different action mechanisms, incorporated in bio-glass magnetron sputtered layers, and thereby, the development of an advanced generation of implant coatings, capable to meet the current challenging requirements of osseous implantology: mechanical durability, match of coating and metallic substrate coefficients of thermal expansion, conservation of network connectivity along with bioactivity and osseointegration ability, match of bone healing rate with coating degradation speed, and effective antimicrobial action against a wide spectrum of pathogens. This will ineluctably translate in the safe and long-lasting performance of functionalized medical devices. Solutions to i) boost and control the duration of antimicrobial effect by means of sacrificial layers, ii) eliminate costly and time consuming stages from the intricate technological chain, and iii) improve the existing in vitro testing protocols, will be also proposed. The degree of innovation comprised in project goals can enable surpassing the current knowledge boundaries in the field of implant coatings, and thus, generate premises for technological transfer to industry and local economical growth. Besides the scientific targets, the project will aim to attract valuable human resources in national research and create opportunities of continual professional formation for young researchers to expand their knowledge and skills
Read more
New Chalcogenide Nanostructures for Information and Communication Technology
Call name:
P 3 - SP 3.1 - Proiecte de mobilități, România-China (bilaterale)
PN-III-P3-3.1-PM-RO-CN-2018-0076
2018
-
2019
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); Key Lab of In-fibre Integrated Optics, Harbin Engineering University, CHINA (CN)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/project/noi-nanostructuri-calcogenice-pentru-tehnologia-informatiei-si-a-comunicatiilor/
Abstract:
Nonvolatile memory (NVM) technologies, such as resistive random access memory (RRAM), are at the center of data revolution. Conductive bridging memory cell (CBRAM) technology is an attractive emerging memory technology that offers simple integration and scalable operational conditions. These unique features make CBRAM technology an ideal candidate for embedded applications. The CBRAM cells rely on the formation of a conductive filament in a solid electrolyte or its rupture due to an applied bias voltage. An oxidizable electrode such as silver or copper provides a source of metal ions that form conductive filaments in an insulating electrolyte (chalcogenide glass). We propose here a systematic exploration of metal diffusion in chalcogenide glasses in order to understand the switching mechanism and improve the memory cells. Several techniques such as X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, absorption spectroscopy and spectroscopic ellipsometry will be used to investigate the diffusion dynamics in different chalcogenide thin films. Finally, memory cells using the most promising materials will be built and fully characterized.
Read more
Investigation of phase change in stacked chalcogenide thin films for multistate memory cells
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-0498
2015
-
2017
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
http://www.infim.ro/projects/multibit
Abstract:
Chalcogenide phase change materials are the most promising candidates for the next generation of non-volatile memories. The increasing need for storage capacity can be addressed using an innovative approach of recording multiple logical states in a single memory by stacking several different chalcogenide layers. In order to better understand the processes which take place in multiple states transitions and to further increase the number of states, we need to know the structure of the materials in those states and the relations between the structure and the electrical and optical properties. Single layer phase change memory materials based on GeTe, GaSb and SnSe and stacked structures of GeTe/SnSe, SnSe/GaSb and GeTe/GaSb will be prepared by pulsed laser deposition (PLD). Structural changes during phase transitions will be revealed by X-ray diffraction (XRD), Extended X-ray Absorption Fine Structure (EXAFS) and X-ray reflectometry (XRR). Modifications of optical properties will be analyzed using in-situ thermal ellipsometry measurements. Electrical resistivity variation as a function of temperature will also be studied. Modeling of the phase change mechanism will be performed using Cellular Automata (CA) and the insights from the model will be experimentally implemented to optimize the number and stability of intermediary states. This investigation will open the way for innovative materials discovery suitable for designing denser, faster, cheaper and greener memories.
Read more
Field effect transistors based on new transparent heterostructures synthesized at low temperatures
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-1122
2015
-
2017
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
http://www.infim.ro/projects/field-effect-transistors-based-new-transparent-heterostructures-synthesized-low
Abstract:
The main objective of the project is to manufacture transparent field effect transistors with superior performances, based on aluminum nitride gate dielectrics. Although aluminum nitride is a very promising material for such type of applications, its use as gate dielectric in transparent transistors is an international novelty. Therefore, this project can generate, by its implementation, a significant impact to the development of transparent electronics. The project proposal will entail complex and fluid research activities, from the synthesis of materials and their characterization in view of optimization, to the fabrication of high performing devices on both rigid and flexible substrates. In order to achieve transistors with an functional response superior to the one of the devices used currently in transparent electronics, the project team will employ a series of optimization solutions (testing new geometries, post-fabrication thermal treatments and various encapsulation solutions). Last but not least, the project will represent a great opportunity for the young project team to form a strong scientific nucleus, which, by using the complex infrastructure of the host institution, will be able to contribute to the progress of micro-nano-electronics, on both nationally and internationally level.
Read more
Temperature sensor based on GHz operating AlN/Si SAW structures
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0677
2014
-
2017
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); ROM-QUARTZ S.A. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO)
Project website:
http://www.imt.ro/setsal
Abstract:
The main objective of this project consists in the manufacturing of the first temperature sensor based on a SAW type device on AlN/Si. The sensor is based on the variation of the SAW resonance frequency vs. temperature. The sensor will be characterized ”on wafer” in the 25-150 oC temperature range. The sensor structures mounted on a special ceramic carrier, provided with SMA connectors and cables, will be characterized in the 5-500 K temperature range inside a cryostat. We aim to obtain a sensitivity >75 ppm/oC (on-wafer measurements) and 60 ppm/ oC for measurements with connectors and cables, in the 23-150 oC temperature range.
The project corresponds to the world wide effort to obtain acoustic devices operating in the gigahertz frequency range, using wide band gap semiconductors (AlN, GaN). These materials have very good piezoelectric properties. High quality GaN and AlN layers grown or deposited on Sapphire SiC or Si substrate permits to use in the fabrication protocol nanolithography, micromachining techniques and monolithic integration. The advantage of using AlN for the SAW structure consist in the possibility to obtain a higher resonance frequency and a higher sensitivity for the sensor. The project has few objectives beyond the state of the art.
The main element will be a SAW structure on AlN/Si with the resonance frequency in the 6-9 GHz range. The highest resonance frequency obtained up to now for SAW structures on AlN/Si is 5.1 GHz and was reported by the IMT and INCD-FM groups, partners in this project, using an IDT structure with digits and interdigit spacing 300 nm wide. This project requires interdigitated transducers having the digit/interdigit spacing 80-150 nm wide, a challenge due to the major difficulties of the nanolithographyic process on materials like AlN or GaN. Up to now, the narrowest lines on AlN have been reported on an AlN/Diamond based SAW structure in 2012 (200 nm).
For the proposed sensor a „single resonator” structure will be developed. Compared with classical structures based on face-to-face resonators and delay lines, the single resonator structure offers few advantages: higher quality factor, lower losses and mainly, higher values for the sensitivity, as it was recently proved by IMT for GaN.
A two steps, low temperature, deposition process will be developed, for the synthesis of thin AlN films. The goal is to lower the FWHM of rocking curve at 1.5° for the AlN films deposited on Si.
There is a potential advantage of monolithic integration of the SAW based AlN temperature sensor in a CMOS ICs. AlN technology is CMOS compatible, due to its low deposition temperature. In such circuits fabrication protocols contain nanolithographic processes, therefore these processes for the sensor will not add significant costs.
The project consortium consists in four teams with excellent expertise and complementarity in the project topics. The IMT team has many contributions in the state of the art for acoustic devices on GaN and AlN, in nanolithography and microwave characterization. INCD-FM has an excellent expertise in high quality AlN films deposition. UPB has excellence expertise in design and modelling of high frequency devices and circuits. ROMQUARZ is the only Romanian enterprise with an authentiq experience in SAW type devices manufacturing on classical piezoelectric materials.They have been involved in SAW devices manufacturing on non-semiconductor materials (quartz, lithium niobate, etc) in the last 20 years.
Read more
Study of Induced Effects by Defects and Impurities on Optical, Electrical and Electronic Properties of Wide Band Gap Semiconductors
Call name:
Projects for Young Research Teams - TE-2011 call
PN-II-RU-TE-2011-3-0016
2011
-
2014
Role in this project:
Project coordinator
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor (RO)
Project website:
http://www.infim.ro/projects/study-induced-effects-defects-and-impurities-optical-electrical-and-electronic-properties
Abstract:
The aim of this project is the analysis of wide band gap semiconductor (WBS) thin films by use of non-destructive characterization techniques: ellipsometry, XRD and luminescence. These materials have existing or potential applications in optics and/or electronics. WBS thin films will be obtained by use of different thin films growth methods: pulsed laser deposition, magnetron sputtering, sol-gel and direct growth from colloidal suspension. The influence of defects and impurities on optical, electrical and electronic properties of such materials will be analyzed. The results from presented optical studies will be verified by conventional electrical measurements and structural analysis by electronic microscopy.
The project is focused on 3 types of wide band gap semiconductors: zinc oxide (ZnO) pure or doped with different elements; zinc nitride (Zn3N2) and the intermediary phases during controlled oxidation; and aluminum indium nitride (AlxIn1-xN) pure and doped with Zn. One objective is to grow and to characterize the n-type semiconductors with reproducible properties.
The estimated results will bring new insights regarding the physics phenomena involved in the growth process and the material properties, essential for obtaining viable results. In addition, special activities will be included in the project concerning the correlation between the fundamental knowledge and practical necessities of electronics, and the standardization of the growth of thin films below 200C.
Read more
Surface and Interface Science: Physics, chemistry, biology, applications.
Call name:
Complex Exploratory Research Projects - PCCE-2008 call
PN-II-ID-PCCE-2008-0076
2010
-
2013
Role in this project:
Key expert
Coordinating institution:
INSATITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA MATERIALELOR
Project partners:
INSATITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA MATERIALELOR (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU INGINERIE ELECTRICA (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE CAROL DAVILA DIN BUCURESTI (RO); UNIVERSITATEA ALEXANDRU IOAN CUZA DIN IASI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA TEHNICA DIN IASI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE DIN CLUJ-NAPOCA (RO); UNIVERSITATEA BABES-BOLYAI DIN CLUJ-NAPOCA (RO); ACADEMIA ROMANA FILIALA TIMISOARA (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE VICTOR BABES TIMISOARA (RO)
Affiliation:
INSATITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA MATERIALELOR (RO)
Project website:
http://www.infim.ro/projects/siinta-suprafetelor-si-interfetelor-fizica-chimie-biologie-aplicatii
Abstract:
This project intends to provide a financial background for developing the community of Surface Science in Romania. Thematics from physics and chemistry of surfaces will be tackled together with applications of surface science in biology and in technology; also new standards will be proposed for consistent data interpretation. The Project clusterizes the most important Romanian teams with preoccupations in surface science, namely all X-ray photoelectron spectroscopy teams with most of the community of thin film deposition, cluster and nanoparticle physics, surface reactivity, surface chemistry and photochemistry, multilayer physics and applications, magnetic fluids, functionalization of surfaces, cell attachment, studies of cellular membrane. The research teams belong to highly prominent Universities and Research Institutes from practically all geographical areas of the country. The Consortium disposes of infrastructure exceeding 10 million euros, of more than one hundreed highly qualified scientists which have generated during the past years more than 3 % of the national scientific visibility. The research will concentrate into four main areas: (i) magnetic properties of surfaces and low-dimensional systems; (ii) electrical properties of surfaces and heterostructures; (iii) surface chemistry; (iv) application of surface science in functionalized systems and in biology, together with (v) an area concentrating on standardization in X-ray photoelectron spectroscopy, Auger electron spectroscopy and related techniques. Each area is divided into several thematics; each thematic has at least one in-charge scientist. This Project will foster the surface science community in Romania and will contribute strongly to the development of high-technological industrial preoccupation in all geographical areas concerned. Several cutting-edge applications are also foreseen by pursuing the fundamental research proposed.
Read more
project title
Call name:
P 1 - SP 1.1 - Proiecte de mobilitate pentru tineri cercetători din diaspora
PN-III-P1-1.1-MCT-2017-0011
2017
-
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
Abstract:
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator
Download (121.56 kb) 28/03/2017
List of research grants as partner team leader
Download (114.62 kb) 28/03/2017
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
Download (513.22 kb) 01/03/2023
[T: 0.5752, O: 359]