Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
Augusta Raluca
Gabor
Researcher
-
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Researcher
Web of Science ResearcherID:
not public
Personal public profile link.
Expertise & keywords
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Technologies and smart products for prevention and treatment of mastitis in productive ruminants, based on green chemistry of the composites for veterinary public health (GREENVET)
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0415
2014
-
2017
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU TEXTILE SI PIELARIE-I.N.C.D.T.P. BUCURESTI SUCURSALA BUCURESTI INSTITUTUL DE CERCETARE PIELARIE - INCALTAMINTE I.C.P.I. (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); ROMVAC COMPANY S.A. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.icechim.ro/polimeri/proiecte/greenvet/
Abstract:
GREENVET project is a multidisciplinary answer for mastitis treatment in productive ruminants by integrating scientific research from outside discipline, inside the veterinary public health. The solution consists in innovative composites using green chemistry, supramolecular structures and intelligent materials using natural sources for one of the most expensive and health risky disease in livestock production. A final treatment will be developed as product, for internal market but with high export potential. The product consists in an integrated complex system with natural bioactive components (essential oils) as cure for sustaining or alternative to classical antibiotics, anti-inflammatories and cicatrizants with high impact on quality of life: problems of food supplies and quality, health and sustainable resources. GREENVET assumes a consortium (2 unique and large national research institutes, the largest technical university from Romania and the largest producer in Romania for veterinary products) with both experienced and young researchers. The management consist in the classical: planning, organizing and controlling in order to attain a minimum risk for project implementation (specific risk in multidisciplinary research), but is based on latest trend in the field -less graphs and more people- concept, by motivational approach and a proven background history of the collaboration between partners. GREENVET consortium experience in biomedical solutions is focused on the project working plan and provides outputs in terms of experimental models, prototype set, innovative technology, patent claim, dissemination in ISI journals and scientific events, documentation for product registration/or product notification. The budget breakdown and plan is well balanced to the resources to be committed in work complexity and less in time length of the task for people with different skills in multidisciplinary research.
Read more
New generation of photocatalytic self-cleaning systems for functionalization of technical textiles and architectural coatings
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0864
2014
-
2017
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); CHIMCOLOR S.R.L. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.cleanphotocoat.roit.ro
Abstract:
Pollution and its side effects on health, structural damage of materials, costs for maintenance, cleaning and replacement of damaged materials is one of the most important causes of severe human diseases and of great economic losses all over the world. The project is focused on the development of new photocatalytic coating materials for technical textiles and architectural finishing systems that can be used to decompose pollutants in the air and on the coated surfaces in order to maintain a clean and healthy environment and avoid economic loses. The objective of the project is to obtain stable, adherent, efficient and durable daylight photocatalytic self cleaning coatings for different types of substrates, such as flexible technical textiles and rigid construction structures. To accomplish the objective, issues that require skills in various fields are to be addressed, in view of: scientific research for designing new photocatalysts, innovation activity for the improvement of their efficiency by extending absorption in the visible range of the spectrum, and technological development in order to obtain photocatalytic coatings dedicated to a particular type of substrate. All these issues will be solved due to a multidisciplinary partnership formed of high rank specialists in materials physics, laser physics, physical-chemistry, polymer chemistry, dyestuffs chemistry, and chemistry of textile materials, constantly having in mind obtaining safety products and technologies and achieving economic advantages from the production stage up to the application by the end-users.The method used for the synthesis of semiconductor materials is a key factor that determines their efficiency, the main reason for developing comparative studies regarding the most important oxide type photocatalysts used in practice (TiO2 and ZnO) that could be obtained and doped by wet methods (hydrothermal,sol-gel) or by laser pyrolysis route. Investigations developed in the project comprise also sensitizing the photocatalysts at the surface or by obtaining composites in order to use more efficient visible light in the photocatalytic decomposition of pollutants. Thus, we aim to develop new and optimized photocatalytically materials exhibiting activity upon visible light with surface characteristics of improved performance and of the high chemical and physical stability, crucial for broader scale utilization of photocatalytic systems in commercial application. However, another important challenge will be to obtain film building materials containing photocatalysts specially designed for coating technical textiles or for architectural coatings. Technologies regarding photocatalytic coatings developed in the project present several barriers that can be lifted by carrying out this project. The photocatalytic coatings that will be obtained will be compatible with the substrates, protect them to self-degradation and maintain their initial physical-mechanical characteristics, presenting high photocatalytic efficiency in visible light and durability. The newly developed photocatalytic coatings during the project will decompose air pollutants and other contaminants in outdoor and indoor applications using sunlight or artificial light, especially after expanding widespread use of LEDs for interior or exterior lighting of buildings, tunnels, advertising materials, thus making possible an enhancement of the photocatalytic effect and thus providing significant benefits for the environment and human health. Photocatalytic materials obtained in project together with the development of technically applicable photocatalytic coating systems adaptable to different types of substrates will represent a step change in this field particularly regarding the economic viability of a range of potential processes.
Read more
Innovative solutions to increase energy efficiency of buildings and industrial equipments by using composite thermal insulating biodegradable materials
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1709
2014
-
2017
Role in this project:
Coordinating institution:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Project partners:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); CEPROCIM S.A. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.ir.ro/biotherm
Abstract:
The BIO-THERM project proposal refers to environmentally friendly products obtained from renewable raw materials, intended for insulating industrial buildings and equipment. The products submitted to be created by the project are biodegradable, with a high useful life and a low risk of bio-deterioration and fire. The project’s theme complies with Research theme 3.1.2, Environmentally friendly products (green chemistry), Research Direction 3.1, Means and mechanisms for reducing environmental pollution, Area 3, Environment.
The project’s overall goal is to obtain new biodegradable thermal insulating composite materials and their innovative use in order to increase the thermal efficiency of industrial buildings and equipment. The project’s specific goals are:
(i) The selection of fungus and bacteria groupings that efficiently form spongy structures from a mixture of lignocellulose, plastic and mineral materials;
(ii) The creation of inoculating bio-products for the fabrication of biodegradable thermal insulating composite materials;
(iii) Developing specific thermal insulating material forming procedures;
(iv) Determining the new materials’ characteristics;
(v) Setting the optimum usage methods for the thermal insulation of industrial buildings and equipment;
(vi) The intellectual protection of the innovative solutions;
(vii) The technical and economic and eco-efficiency analyses of the new biodegradable thermal insulating composite materials;
(viii) The wide-scale dissemination of the results obtained within the project
The project develops existing solutions for obtaining thermal insulating materials from spongy structures formed by fungi grown on lignocellulose waste, via contributions that reduce the disadvantages of the known solutions.
The goal of introducing thermal resistant recycled plastic materials (ex. polypropylene) is to reduce the bio-deterioration potential (by limiting the biocomposite’s bio-degradation speed) and to increase the mechanical strength by creating a framework of improved resistance.
Co-cultivating fungi with bacteria that stimulates their growth and forms biofilms on the plastic materials in the mixture aims to reduce the material fabrication time (and to increase the direct economic efficiency) and to achieve compatibility between the hydrophobic (recycled plastic materials) and hydrophilic (lignocellulose material) components.
The absorbing mineral materials (for ex.. kieselgur or zeolies) reduce water activity in the substrate (drying in the final fabrication stage), limiting the bio-deterioration potential, providing the required micro-elements to accelerate the growth of microorganisms in the cultivation stage and reducing the risk of fire.
Using the granular bio-preparation with fungus and bacteria spores allows the material to be fabricated in various shapes, by growing it into molds specially formed for the desired applications, by controlled development on the surfaces it was sprayed along with the growth substrate mixture, by directed in situ cultivation to fill cavities. Directed in situ cultivation provides the ability to repair the thermal insulating materials created using this process, increases its useful life and eco-efficiency.
The final drying of the resulting process down to less than 10% material humidity is meant to deactivate the microorganisms and to provide the thermal and physical characteristics needed for the intended uses.
By varying the lignocellulose and plastic material mixture composition, as well as using different microorganism groupings (fungi forming the spongy mycelium and bacteria that stimulate fungal growth and make the substrate compatible), materials with different properties, for various uses, may be obtained.
Read more
Innovative polyester/bacterial cellulose composites for biomedical engineering
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1002
2012
-
2016
Role in this project:
Coordinating institution:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Project partners:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE CHIMICO - FARMACEUTICA - I.C.C.F. BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); I.C.P.E. BISTRITA S.A. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.tsocm.pub.ro/cercetare/POLYBAC
Abstract:
The project entitled “INNOVATIVE POLYESTER/BACTERIAL CELLULOSE COMPOSITES FOR BIOMEDICAL ENGINEERING”, acronym POLYBAC focuses on the development of new composite materials based on polyhydroxyalkanoates and bacterial cellulose with biomedical applications.
One major major objective consists in the synthesis and characterization of functionalized naturally-occuring biodegradable polyhydroxyalkanoates (PHAs) and bacterial cellulose (BC) composites for bone tissue repairs.
The second major objective refers to the synthesis and characterization of polyhydroxyalkanoates and bacterial cellulose composite materials for blood vessel engineering.
The development of innovative composite materials for bone pathology is a very interesting and challenge task with interdisciplinary view involving polymer science, organic chemistry, physics, biology and medicine.
These composite materials should be biocompatible with the living tissue and should provide minimum inflammatory or cytotoxic reactions. In vitro and in vivo tests will show the capacity of this material to come into contact with the living tissue inducing or not a toxic or immunologic response at the level of the entire organism.
At industrial scale, we intend to develop plates and sheets by pressing and milling process, tubes by extrusion and various injected parts that meet the essential conditions according to Directive 93/42 EEC concerning medical devices (including European Pharmacopoeia).
Read more
Eco-friendly food packaging from last generation multifunctional bioplastics
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1569
2012
-
2016
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); METAV - CERCETARE DEZVOLTARE S.R.L. (RO); INSTITUTUL DE CERCETARI PRODUSE AUXILIARE ORGANICE S.A. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.bio-multi-pack.icechim.ro
Abstract:
The project proposes to carry out a technology for obtaining multifunctional materials based on last generation of biopolymers and bioadditives melt processable into catering food packaging. These packages will comply with the food safety conditions and will have physical – mechanical properties proper to the plastic products that are generally of commodity nature. The national and international novelty and added value of the project is determined by the originality of the propose new conceptual models for realising of new materials with improved thermal stability, small hygroscopicity, melt processable into catering food packaging. The elaboration of new solutions needs inter and transdisciplinary knowledge of chemistry, physics, physics and chemistry of polymers, mathematical statistics, process engineering, scale up and economics. The new technology has a great applicative potential and can be applied on the same industrial platform or on different platforms. All the novelty solutions will be disseminated and will be patented. At present on the Romanian market one can find only packaging made from imported oxobiodegradable pellets which has limited biodegradability. The realising according to the proposed new technology products which in nature will be totally destroyed in a very short time, would turn into the advantaje of beeing the only supplier, on the Romanian market for totally biodegradable products. The technology can be internationally applied by country with the same envoiroment problems as Ramania. The project consortium is formed from 4 partners: ICECHIM (CO), Politehnica University Bucharest (P1), SC Metav CD –SA (P2) and SC ICPAO SA (P3) with complementary expertise. The project manager is doctor and fulfill the eligibility conditions. P1 and P2 has project responsable that are doctors. Because of the great interest for the proposed subject P3 co–funded with 25 % from the entire project fund.
Read more
Thermosensitive energy saving systems with tailored solar reflecting/absorbing properties for construction structures
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1391
2012
-
2016
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); CHIMCOLOR S.R.L. (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://www.thermosolar.roit.ro
Abstract:
In principle thermochromic and thermotropic systems can function as energy saving systems. For high temperatures, during summertime thermochromic coatings have the ability to reflect solar energy, reducing the surface’s temperature; while in wintertime absorb solar energy, increasing the surface’s temperature as reversible color change takes place. Applied thus on external building surfaces, they have the potential for the reduction of heating and cooling loads, contributing to the reduction of urban temperatures, fight heat island and reduce air pollution.
Color-changing compounds have become increasingly important in recent years in the study and the production of thermochromic coatings that is coatings which respond thermally to their environment, changing reversibly their color from darker to lighter tones as temperature rises. The novelty comes from the use concomitant of thermotropic hydrogels which respond thermally by changing transparency from total transparent to translucent. Combining these features of termotropic hydrogels and thermochromic dyes we can obtain complex thermosensitive systems that respond to an increase in temperature by switching the color hypsochromically while accompanied by a change in transparency of the hydrogels.
During the project we intend to develop thermosensitive energy saving coatings that action on the entire Vis-NIR range and are most typically applied to roofs but additionally can also be applied to exterior and interior walls in much the same way. Thermosensitive coatings that will aim to obtain change reflectivity and color as a function of temperature, present enhanced weathering and durability and may be in any suitable formulation for application on roofs or walls such as water-based, oil-based, epoxy-based or acrylic-based formulations.
Read more
NEW CONCEPTS AND STRATEGIES FOR THE DEVELOPMENT OF KNOWLEDGE OF NEW BIOCOMPATIBLE STRUCTURES IN BIOENGINEERING
Call name:
Complex Exploratory Research Projects - PCCE-2008 call
PN-II-ID-PCCE-2008-0248
2010
-
2013
Role in this project:
Coordinating institution:
UNIVERSITATEA DIN BUCURESTI-DEPARTAMENTUL DE BIOCHMIE SI BIOLOGIE MOLECULARA
Project partners:
UNIVERSITATEA DIN BUCURESTI-DEPARTAMENTUL DE BIOCHMIE SI BIOLOGIE MOLECULARA (RO); INSTITUTUL DE BIOLOGIE SI PATOLOGIE CELULARA NICOLAE SIMIONESCU-LABORATORUL DE CELULE STEM SI TERAPIE CELULARA (RO); UNIVERSITATEA POLITEHNICA BUCURESTI-FACULTATEA DE CHIMIE APLICATA SI STIINTA MATERIALELOR (RO); UNIVERSITATEA POLITEHNICA BUCURESTI-CENTRUL NATIONAL DE CONSULTANTA PENTRU PROTECTIA MEDIULUI (RO); INSTITUTUL DE CHIMIE FIZICA ILIE MURGULESCU (RO); UNIVERSITATEA BABES-BOLYAI CLUJ-NAPOCA, CENTRUL DE BIOMATERIALE, INSTITUTUL DE CERCETARI EXPERIMENTALE SI INTERDISCIPLINARE (RO); INSTITUTUL DE CERCETARE-DEZVOLTARE PENTRU CHIMIE SI PETROCHIMIE BUCURESTI (RO)
Affiliation:
INSTITUTUL DE CERCETARE-DEZVOLTARE PENTRU CHIMIE SI PETROCHIMIE BUCURESTI (RO)
Project website:
http://www.pcce248.weebly.com
Abstract:
IN TISSUE ENGINEERING (TE) THE COMBINED KNOWLEDGE FROM BIOLOGY AND ENGINEERING
IS DIRECTED TOWARDS THE POSSIBILITY TO RESTORE LOST OR DAMAGED TISSUE. THE
GENERAL AIM OF THIS PROJECT IS TO CONSOLIDATE A CROSS-DISCIPLINARY TEAM OF
COLLABORATING INVESTIGATORS TO CARRY OUT SOME CELL-SUPPORT CONSTRUCTS (CSC)
WITH POSSIBLE APPLICATIONS IN REGENERATION/REPAIR OF SOFT AND HARD TISSUES AND IT
DOES NOT ASSUME PRE-CLINICAL AND CLINICAL TRIALS. THIS APPLICATION CONTAINS THREE
SPECIFIC OBJECTIVES: 1- OBTAINMENT OF NEW SUPPORT 3-D STRUCTURES DESIGNED TO
CULTIVATE OSTEOBLASTS AND HUMAN MESENCHYMAL STEM CELLS (HMSC) TO OBTAIN CSCS
WITH CHARACTERIZED ARCHITECTURE AND MECHANICAL PROPERTIES, USEFUL IN BONE TISSUE
ENGINEERING; 2 - DEVELOPMENT OF REGENERATION STRATEGIES OF ADIPOSE TISSUE BY
IMPLANTATION OF PREADIPOCYTES IN 3-D HYDROGEL SCAFFOLDS, THAT MIMIC
EXTRACELLULAR MATRIX, DESTINED TO THE RECONSTRUCTION OF SOFT TISSUE DEFECTS
(SEVERE TRAUMAS, DEEP BURNS OR TUMOR RESECTIONS) AND 3 - STUDY OF THE EFFECTS OF 3-
D CULTURE AND GROWTH FACTORS ON THE CHONDROGENIC DIFFERENTIATION OF HMSC CELLS
TO OBTAIN SOME INVESTIGATION MODELS OF THEIR POTENTIAL IN CARTILAGE TISSUE
REGENERATION. THE PROJECT PRESENTS VIABILITY, INNOVATION, COMPLEXITY AND
INTERDISCIPLINARY EXCHANGE BECAUSE: 1 - IT IS A CONSORTIUM WHICH CONSISTS FROM
PARTNERS WITH COMPLEMENTALLY COMPETENCES WHO ENGAGE TO ACT AS A UNITY IN THE
FOLLOWING FIELDS: CELLULAR AND MOLECULAR BIOLOGY, CHEMISTRY AND PHYSICS OF
MATERIALS, ENGINEERING SCIENCES – IN ORDER TO GET ALL OBJECTIVES; 2 - THE PARTNERS
ARE STAFFS WITH A GOOD, STRONG REPUTATION ON THEIR FIELD, AND THEY HAVE THE
NECESSARY MANAGERIAL EXPERIENCE AS WELL AS THE HUMAN RESOURCES AND PERFORMING
EQUIPMENTS AND 3 - THE PARTNERSHIP WAS PARTIALLY CONSOLIDATED DURING PREVIOUS
COLLABORATIONS AND WHICH SUSTAIN IT. ACCOMPLISHMENT OF THE OBJECTIVES OF THIS
PROJECT CONSTITUTES A SCIENTIFIC CHALLENGE FOR ANY SCIENTIFIC TEAM AROUND THE
WORLD.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.5643, O: 197]