Log In
Sign Up
Romania
Citizenship:
Romania
Ph.D. degree award:
Not applicable
Mr.
Andrei Gabriel
Tomulescu
Research Assistant
Research Assistant
-
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Researcher
5
years
Web of Science ResearcherID:
B-8700-2019
Personal public profile link.
Curriculum Vitae (04/10/2019)
Expertise & keywords
Perovskites
Solar cells
Projects
Publications & Patents
Entrepreneurship
Reviewer section
NANOSTRUCTURED COATING TECHNOLOGY FOR SELF CLEANING AND ANTIBACTERIAL WINDOWS
Call name:
P 2 - SP 2.1 - Proiect de transfer la operatorul economic
PN-III-P2-2.1-PTE-2021-0150
2022
-
2024
Role in this project:
Key expert
Coordinating institution:
OPTOELECTRONICA - 2001 S.A.
Project partners:
OPTOELECTRONICA - 2001 S.A. (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL DE MECANICA SOLIDELOR (RO)
Affiliation:
Project website:
https://nanotechwin.optoel.ro/
Abstract:
The scope of the project is to increase the innovation capacity and competitiveness of the coordinating enterprise S.C. OPTOELECTRONICA-2001 SA, by developing its offer of technologies and products adapted to the market requirements to streamline the maintenance of constructions that have large surface windows. The economic agent develops technology for coating windows with antibacterial and self-cleaning properties nanostructured layers by assimilating the RDI results of the partners, the National Institute of Materials Physics and the Institute of Solid Mechanics of the Romanian Academy.
The objectives of the project are: obtaining glass prototype (window surface with nanostructured layers) with antibacterial and self-cleaning properties; obtaining equipment prototype for deposition (printing) of nanostructured layers (TiO2) on glass substrate with surface dimensions equivalent to A2 format; obtaining prototype technology for coating windows with nanostructured layers; connecting applied research and technological progress in Romania to the evolution and requirements of the socio-economic environment; increasing the innovation capacity of the applicant enterprise, through the development of new technology and product, estimated to have the potential for commercial exploitation on the domestic and international markets.
TiO2 coatings will be obtained through an innovative technology patented by INCDFM through which the morphology of the TiO2 layer can be modified to improve the wetting properties of the surface and therefore the self-cleaning efficiency, and to increase the antibacterial activity that depends mainly on surface chemistry and structure. This technology has an important advantage in the economy of producing TiO2 coatings on an industrial scale, the technological processes developed requiring temperatures lower than 150°C and for very short times (less than 15 min).
Read more
Towards perovskite large area photovoltaics
Call name:
EEA Grants - Proiecte Colaborative de Cercetare
EEA-RO-NO-2018-0106
2021
-
2024
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); University of Oslo (NO); Reykjavík University (IS); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH (RO); TRITECH GROUP SRL (RO)
Affiliation:
Project website:
http://perla-pv.ro/
Abstract:
The perovskite solar cells (PSC) have attracted a considerable interest in photovoltaics community, showing a very fast development in terms of power conversion efficiency (PCE), reaching now values over 25% certified PCE in not stabilized small area samples, proving that they can become real competitors to commonly used solar-cell materials (e.g based on Si). Not only the remarkably large PCE is an important asset, but also the low production costs makes the PSCs very attractive for the solar cell technology, as solution processing techniques are typically employed. In addition, they can be hosted by a long range of flexible substrates, pushing further the record for power per weight and implicitly their utility. However, while the high PCE values and the low production costs are important advantages for PSC, the real challenges to overcome prior of industrial production are their stability in time, reliability and reproducibility of the performance as well as environmental issues raised by the use of toxic elements/solvents. These are well known problems for the small area standard and inverted PSCs, produced by spin-coating in research laboratories and inherently remain the same when envisaged is the fabrication of large area devices. The project addresses these issues starting from the premise that coherent experimental and theoretical studies should be done using from the start cheap deposition techniques applicable on large areas (printing and sputtering). Beside allowing the scaling up, such techniques can be better controlled offering a better homogeneity in deposition than the spin-coating method. The present project includes fundamental and applicative research aiming to achieve both scientific and practical goals. The overall aims/objectives of the project are: A) to develop efficient, stable, reproducible standard and inverted perovskite solar cells and photovoltaic modules fabricated with affordable large area and environmental friendly technologies. It is expected that by developing low cost and stable photovoltaic panels with optimized efficiency the use of such devices in public and private buildings will be boosted, contributing thus to increasing the share of renewable energy in energy balance in Romania and Donor States; B) to strengthen the knowledge base concerning the application of environmental technology; new knowledge will be acquired regarding how PSCs can be optimized for large scale applications and how can they be fabricated using environmentally friendly technologies with low carbon footprint. Specific objectives to be achieved during the project are: O1 - understand the physical working principles of perovskite solar cells and find solutions to increase and stabilize the PCE while enlarging the area of the cells; O2 – reduce the amount of costly materials and toxic solvents used in the fabrication process of both standard and inverted PSC structures with other inexpensive and environmental friendly; O3 - stabilize the PCE performance of PSC via compositional engineering and proper replacements including the selective contacts; O4 - enhance the charge collection efficiency by optimizing interfaces between the layers in the cell; O5 - develop cheap large area fabrication technologies (printing and sputtering) for all the component layers in PSCs, standard and inverted structures; O6 - obtain efficient large area encapsulated PSCs and photovoltaic modules with PCE over 15%. The starting TRL is 3 and the envisaged TRL is 6, meaning that fully operational photovoltaic modules will be manufactured and tested in relevant industrial environment with the help of the SME partner.
The consortium is composed by 5 partners: National Institute of Materials Physics (NIMP), Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), and Tritech Group (WATTROM), a SME as end-user, all from Romania; Oslo University (UiO) from Norway, and Reykjavik University (RU) from Iceland.
Read more
Science and Engineering of Kesterites for the Next Generation of Solar Cells
Call name:
P 4 - Proiecte de Cercetare Exploratorie, 2020
PN-III-P4-ID-PCE-2020-0827
2021
-
2023
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://infim.ro/en/project/kestercell-2/
Abstract:
The project aims to develop by concentration engineering Cu2ZnSn(Ge)S(Se) thin films using a novel simultaneous co-deposition using magnetron sputtering from 3 up to 6 different targets, revealing original scientific insights regarding the structural, optical and electrical properties of kesterites and the photovoltaic characteristics of corresponding solar cells in correlation with composition, and producing by interface engineering (front and contact innovations) new solar cells with efficiency near or above the present world record.
Read more
3D direct ink writing (robocasting) of bioceramic porous scaffolds: towards a new generation of bone graft substitutes
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-0463
2021
-
2022
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
https://infim.ro/en/project/robonegraft/
Abstract:
Bone transplantation demand stems from tissue deficiency or a substantial skeletal loss, and has multiple causes: age, severe trauma, chronical bone disorders/infections, tumor resections, congenital bone defects. Bone grafting evolved in the last decade into a distinct biomedical segment, which will continuously expand. Responding to this necessity, the project proposal aims to delineate series of innovative architectural solutions of porous bone graft substitutes (BGSs) to be fabricated by accessible and performant 3D robocasting technologies, from bioactive and/or piezoelectric ceramics. Their functional performance will be assessed to prospect their potential for developing a new generation of BGSs capable to satisfy the mechanical and biological requirements of both trabecular and the more demanding cortical bone regions. New routes for endowing angiogenesis, osteogenesis and antibacterial capabilities to both the bioactive and piezoceramic BGSs, such as to enable their rapid, safe and long-lasting osseointegration, will be explored and implemented. Not least the proposal will tackle another highly important issue: the lack of standard in vitro protocols for uniform cell seeding of porous scaffolds.
Innovative and original fundamental and technological elements are expected to emerge: (a) design of bioactive ceramics with controlled degradability and therapeutic ion release, (b) coupling of mechanical strong piezoelectric ceramics with biofunctional materials and (c) in vitro testing of piezoelectric effect on cells behavior under dynamical mechanical stress conditions. The project will lead to the creation of an independent research team of young scientists with complementary skills, and strive to (i) attract human resources in the national research; (ii) create opportunities of professional formation for young researchers, and (iii) generate premises for the future formation of a larger scientific community with skills and knowledge in materials for medicine.
Read more
High quality HZO and AlN films grown by industrially compatible techniques for next generation electronic and sensing devices
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-0688
2020
-
2022
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
https://infim.ro/en/project/high-quality-hzo-and-aln-films-grown-by-industrially-compatible-techniques-for-next-generation-electronic-and-sensing-devices/
Abstract:
The project aims to (i) delineate the conditions for the synthesis of high-quality Aluminum Nitride (AlN) and Hafnium – Zirconium Oxide (HZO) layers onto large-area substrates by Chemical Vapor Deposition (CVD) and Atomic Layer Deposition (ALD), and to (ii) integrate them into electronic devices. These two materials (AlN and HZO) have a great potential for high-tech industry, e.g. pyroelectric sensors and next-generation field effect transistors.
Fundamental physics and applicative studies will be harmoniously intertwined for a better understanding of these topical materials characteristics and of their impact on the output parameters of the devices.
The project activities are designed to find the answers to several critical pending issues, such as the pyroelectricity and the origin of ferroelectricity in HZO and of the negative capacitance effect, or the sustainability and limits of AlN-based sensors in harsh environments. Ferroelectric memories, metal-insulator-semiconductor and thin film field effect transistors structures will be fabricated and subsequently analyzed, and the results will be interpolated and discussed with respect to the physico-chemical features of the AlN and HZO thin films.
CVD and ALD techniques are underdeveloped in Romania, even though they have demonstrated tremendous advantages and applicability potential for the development and large-scale production of nano- and micro-electronics. Thereby, the development and successful application of the CVD and ALD techniques, in the framework of this project, for the deposition of high-quality thin films, will represent an important achievement, of high-interest, at both regional and national level.
Read more
Controlling the electronic properties in heterostructures based on ferroelectric perovskites: from theory to applications
Call name:
P 4 - Proiecte Complexe de Cercetare de Frontieră
PN-III-P4-ID-PCCF-2016-0047
2018
-
2022
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/control-of-electronic-properties-in-ferroelectric-perovskite-heterostructures-from-theory-to-applications/
Abstract:
The main objective of the project is to obtain ferroelectric materials with controlled electronic properties at the same level as this properties are controlled in Si. This will be realized by hetero-valent doping, correlated with stress engineering and band gap engineering without affecting, as much as possible, the ferroelectric properties. The main objective is complex and ambitious because, up to date, there was no experimental demonstration that it possible to obtain n or/and p type conduction in epitaxial ferroelectrics. The successful achievement of this objective will open a new domain, that of ferroelectric electronics or ferrotronics, by producing electronic devices of p-n homo-junction type or junction transistors with ferroelectric materials. Two types of materials are envisaged, namely lead titanate-zirconate (PZT with tetragonal structure and a mixed bismuth ferrite (BFO) with bismuth chromit (BCO). In the first case the heterovalent doping will be studied on Pb or Zr/Ti sites with the aim to obtain n and p type conduction. The final goal is to produce a p-n homo-junction based on epitaxial PZT films. In the second case band gap engineering will be tested by varying the Fe/Cr content, and the dominant conduction mechanism will be identified, the goal being to use the material in photovoltaic applications. The activities will contain: theoretical studies regarding the relation between dopants, electronic properties and the ferroelectricity, including self-doping effects or electrostatic doping; target preparation for deposition of thin films; epitaxial growth of the film; characterization activities of the structure and physical properties. Not only classic doping in the target is envisaged but also doping during the epitaxial growth. The consortium is composed of 4 teams from three different institutions, including a number of 14 young researchers full time equivalent.
Read more
Chemical recycling of PET - a new heterogeneous catalytic route
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-1969
2020
-
2022
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://infim.ro/en/project/chemical-recycling-of-pet-a-new-heterogeneous-catalytic-route/
Abstract:
Plastic is an essential material in our daily lives that has multiple functions: food packaging bottles and jars, insulators, microchips in phones and computers, textile industry and so on. The world’s annual consumption of plastic materials has increased from around 5 million tonnes in the ‘50s to nearly 300 million tonnes in 2020. Due to plastic’s resistance against degradation and its increased production in industry, the issue of plastic pollution has evolved to become a menace to global ecology. Therefore, there is an urgent need to resolve these environmental issues that minimise the importance of these materials that play an important role in our daily lives. All these recycling approaches have limitations because the PET can only undergo a finite number of processing cycles before their properties are significantly compromised ends up in the landfills or is incineration, being the source of others pollutants. However, PET could be recovered through chemical recycling, we could save the natural resources and the prices of polymers would be lower. RECYCLE propose a simple solution, to heterogeneously catalyse PET depolymerisation using surface modified flexible materials, in which 2D malleable flakes/sheets are surface modified by strong acidic functionalities, like sulfonates.
Read more
Optimization of photoactive perovskite materials using machine learning techniques
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-1567
2020
-
2022
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA SI INGINERIE NUCLEARA " HORIA HULUBEI " - IFIN - HH (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://optim-prv.nipne.ro/index.php
Abstract:
The project proposes a new methodology for screening, prediction and validation of photoactive perovskite materials using machine learning techniques (ML). In the past few years, solar cells based on hybrid perovskite materials have shown impressive values of photoconversion efficiencies (PCEs), to date reaching 25.2%, with options for further enhancement. However, due to the huge number of possible structural and compositional configurations, optimizing the perovskite materials for stability and solar cell PCE by exhaustive numerical calculations or large scale synthesis is not feasible. Instead, the ML techniques can provide the necessary framework for a guided search. Using high throughput density functional theory (DFT) calculations, a database containing opto-electronic properties of interest shall be first assembled. Then, the ML scheme shall be implemented using artificial neural networks (ANNs), which already provided successful predictions in other condensed matter systems. They will primarily use the theoretical data as well as feedback from experiments. The selected candidates shall be synthesized and perovskite solar cells shall be fabricated as final products. The aim is to optimize the absorption spectra of the perovskite materials in order to increase the solar cell PCE and to enhance their stability. The coordinator team (NIPNE) will be focused on the development of the DFT-ML scheme, based on prior experience with first-principles calculations and ANN based methods for the prediction of the electronic gaps. The partner team (NIMP) will perform the synthesis of perovskite materials and fabrication of PSCs, based on extensive expertise accumulated during the PERPHECT project, where record PCEs were achieved. Relating two key elements (ML techniques and perovskite materials) the project is expected to have a large impact in material engineering and can reshape the current approaches for investigating new materials.
Read more
Solar mini-module with perovskite solar cells
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-1411
2020
-
2022
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
https://infim.ro/project/solar-mini-module-with-perovskite-solar-cells/
Abstract:
In the last decade, a new generation of solar cells arise remarkably, the hybrid perovskite solar cells (HPSCs, or simply PSCs). They cumulate exceptional intrinsic photophysical properties with manufacturing versatility and low-cost precursors materials, therefore present huge potential for large-area production on an industrial scale.
This project, brings previous research conducted by our group, in the field of perovskite solar cells, closer to commercial applications by fabricating large-area perovskite solar cells and integrating them into functional solar modules. The Solar-PVK project aims to develop efficient (PCE>10%), large-area PSCs, with an active area exceeding 1 cm2, using low-cost solution deposition technologies. These devices will be connected together and encapsulated in a sealing box fabricated in-house, to assembly a prototype of a functional solar module. This solar module will be integrated into a solar portable charger, able to power for example a mobile phone, in case of emergency situations or off-grid low power applications.
The novelty consists in the topic of solar perovskite hybrid cells, which is new internationally and at the national level; no other research institution in Romania has reported the fabrication of PSCs. The idea of the project is bold and contains significant risk elements but promises of high reward if the difficulties could be surmounted.
Fabricating a solar charger based on hybrid perovskite solar cells presents the highest degree of novelty.
Read more
New approaches for the synthesis of hybrid organic-inorganic perovskit (HOIP)-type materials with possible ferroelectric properties for photovoltaic applications
Call name:
P 4 - Proiecte de Cercetare Exploratorie
PN-III-P4-ID-PCE-2016-0692
2017
-
2019
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/new-approaches-for-the-synthesis-of-hybrid-organic-inorganic-perovskit-hoip-type-materials-with-possible-ferroelectric-properties-for-photovoltaic-applications/
Abstract:
The ambitious goal of PEROFER proposal is to design new approaches for the synthesis of hybrid organic-inorganic perovskite-type materials with possible ferroelectric properties for photovoltaic applications. The advantages of hybrid organic-inorganic perovskite (HOIP) are: i) their low cost, ii) use of Earth-abundant and available elements, and iii) low-temperature processing synthetic routes through which they can be produced. Nevertheless, before commercialization of HOIP for photovoltaic technology there are some scientific and technical drawbacks which must be overcome: i) poor reproducibility of the HOIP materials; ii) lack of uniformity of the perovskite layers; iii) rapid degradation in moist environments (especially water); iv) lack of long-term stability of perovskite solar cells; v) suffers from bandgap larger than the ideal; iv) the use of highly toxic and carcinogenic Pb element with high environmental impact.
To give a chance to hybrid organic-inorganic perovskite onto the market, the development of very efficient, cost-effective and environmental friendly synthesis method of HOIP is highly desired.
The challenges of PEROFER proposal are original and innovative, and require scientific breakthroughs in fundamental phenomena and significant technological developments.
Read more
Field effect transistors based on new transparent heterostructures synthesized at low temperatures
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-1122
2015
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/projects/field-effect-transistors-based-new-transparent-heterostructures-synthesized-low
Abstract:
The main objective of the project is to manufacture transparent field effect transistors with superior performances, based on aluminum nitride gate dielectrics. Although aluminum nitride is a very promising material for such type of applications, its use as gate dielectric in transparent transistors is an international novelty. Therefore, this project can generate, by its implementation, a significant impact to the development of transparent electronics. The project proposal will entail complex and fluid research activities, from the synthesis of materials and their characterization in view of optimization, to the fabrication of high performing devices on both rigid and flexible substrates. In order to achieve transistors with an functional response superior to the one of the devices used currently in transparent electronics, the project team will employ a series of optimization solutions (testing new geometries, post-fabrication thermal treatments and various encapsulation solutions). Last but not least, the project will represent a great opportunity for the young project team to form a strong scientific nucleus, which, by using the complex infrastructure of the host institution, will be able to contribute to the progress of micro-nano-electronics, on both nationally and internationally level.
Read more
Integrated nanosystems for solar fuel generation
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-1384
2015
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/ro/projects/nanosisteme-integrate-pentru-generarea-solara-de-combustibili
Abstract:
The project “Integrated nanosystems for solar fuel generation” aims the development of a bi- and/or multi-component ensemble mainly based on ferroelectric materials able to efficiently split the water and to perform the CO2 reduction under sunlight irradiation. To reach the project main goals different approaches will be studied. One approach is to develop operational OER and HER/CRR powder catalysts based on earth-abundant and stable ferroelectric materials, which finally to be able to perform easily water oxidation and CO2 reduction processes on their surfaces. Co-catalysts for both category of transformations will be loaded on the surface of the semiconductors in order to reduce each reaction overpotential. Another approach is to develop these materials in different morphologies (nanowires, nanotrees or thin films) and to check the stability and optimize their photocatalytic performances under different reaction conditions. The as prepared photocatalytic systems will be firstly tested in separate reaction conditions and later on coupled through an ohmic contact into an integrated nanosystem. The expected results from this project would make a major contribution to Romanian excellence and competitiveness in this research field.
Read more
Enhancement of dental implants biointegration by coating with bioglass thin films with osteoinductive and antimicrobial properties
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-0180
2015
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/projects/enhancement-dental-implants-biointegration-coating-bioglass-thin-films-osteoinductive-and
Abstract:
The project aims to develop and test in vivo a new generation of dental implants functionalized with bioglass (BG) coatings with osteoinductive and antimicrobial properties, capable to enable a faster osseointegration, safety and comfort, a high success rate, and long lifetime. The project will build on a rich experience in fabricating BG coatings by magnetron sputtering (RF-MS) and a trans-disciplinary and dynamic team, constituted of young researchers with complementary expertise. The BG implant-coating design refinements and in vitro functional interrogations will continue, in order to maximize the biological response, allowing, in a next stage, the in vivo testing on animal model of the true potential of BG films synthesized by RF-MS to induce a rapid and long-lasting osseointegration. The novel research directions to be addressed – determination of BG critical coating thickness, attainment of BG layer dissolution/tissue reconstruction equilibrium, tailoring of the surface energy targeting the augmentation of osseointegration, study of the synergy of various antimicrobial agents, or the preliminary studies regarding alkali-free BG films from innovative formulations – will work fluidly for the accomplishment of the project objectives. Another project priority is the creation of a critical mass of young researchers able to coherently implement complex themes, and to actively involve in national/international consortia for the development of the biomedical domain.
Read more
Optimized pyroelectric materials through the polarization gradient concept and experimental model for a pyroelectric detector with potential for applications in monitoring high power/energy lasers.
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-0470
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INTERNET S.R.L. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://www.infim.ro/projects/optimized-pyroelectric-materials-through-polarization-gradient-concept-and-experimental
Abstract:
The project aims to develop materials with optimized pyroelectric properties using the polarization gradient concept and develop integral pyroelectric detectors for the near infrared (700 nm) to THz (≤100 µm) wavelengths range. These detectors have potential application also in the detection of high power or high energy laser beams (e.g. the lasers of ELI-NP project). The materials to be used in this project are ferroelectrics with a perovskite structure such as Pb(Zr,Ti)O3 (PZT) or (Ba,Sr)TiO3 (BST) due to the fact that the transition temperatures can be modified by changing the Zr or Sr content. These materials will be combined in structures of multilayers with gradient in concentration and polarization in order to increase the figure of merit M given by the ratio between the pyroelectric coefficient p and the dielectric constant ε (M=p/ε).
The present project proposes a novel way of increasing the merit figure M by increasing the pyroelectric coefficient. This can be achieved by developing materials that exhibit a concentration gradient in the direction of the polarization, which introduces a succession of phase transitions at different temperatures, leading to a more abrupt variation of the polarization with the temperature and thus to a larger pyroelectric coefficient.
Another effect to turn to account is the temperature variation of the dielectric constant which can contribute to further increase the total pyroelectric coefficient. The temperature variation of ε can contribute to the pyroelectric signal if an electric field is applied to the ferroelectric material in order to maintain a stable polarization state, thus averting possible signal variations caused by the ambient temperature conditions.
The materials with gradient in concentration and polarization will be realized in bulk form, as ceramic wafers (25 mm minimum diameter and 6 mm thickness) by using the spark plasma sintering (SPS). Alternately, the ceramic technology coupled with classical sintering, or hot press, can be used. The sintering conditions will be optimized in order to obtain the best p/ε ratio. The selected material will then be used to build the active elements for the pyroelectric detection. In this respect, metallic electrodes will be deposited and one of them will be blackened in order to ensure a better absorbtion of the incident electromagnetic radiation. A novel approach is that carbon nanotubes are to be used for the blackening. This way the absorbtion coeficient can be increased close to 1. The active element will then be used to create pyroelectric detectors, including the electronics for signal processing and the sofware needed for PC display. Beside the mentioned ceramic materials, epitaxial multilayered structures with gradient in concentration and polarization will be realized and their pyroelectric detection properties will be investigated as well during the project.
The consortium is formed by 3 partners: coordinator of the project –CO is a national institute with experience in ceramic materials and pyroelectric detection; one university –P1 with experience in preparation of ceramic powders; one company –P2 specialized in signal procesing and different types of electrical measurements. CO and P1 will develop the active element for the pyroelectric detection and P2 will develop and test the experimental model of the system for pyroelectric detection including all the electronics and the sofware needed for the different types of applications for which the pyroelectric detector is developed by CO and P2: automatizations, non-contact measurements of temperature or monitoring of the high power/energy laser beams. The ultimate goals are to obtain: a technological process for obtaining the active element of pyroelectric detection, as well as two experimental models, one for the Pyroelectric Detector and one for a Pyroelectric Detection System used to detect high intensity laser beams.
Read more
Drug delivery systems based on mesoporous inorganic matrix
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-0437
2012
-
2016
Role in this project:
Coordinating institution:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Project partners:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); UNIV.DE MEDICINA SI FARMACIE - CAROL DAVILA (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); POLIPHARMA INDUSTRIES S.R.L. (RO)
Affiliation:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Project website:
http://www.chim.upb.ro/uploads/cafe/pages/mesodrug.html
Abstract:
The project Drug delivery systems based on mesoporous inorganic matrix approaches a very complex research in a topic of great interest for the human health and will be execute by a consortium. The complex project is structured in 3 stages as modules, with a total duration of 31 months.
The main challenge of this proposal is to convert some injectable cytostatic drugs in oral targeted drug delivery systems with controlled release. Besides this, another challenge of the project is to perform a complete investigation of interactions between inorganic matrix and pharmaceutical active compounds by various techniques, the interactions between both obtained drug delivery systems (DDS) and inorganic carriers with cells and cellular membrane, as well as the drug release form the obtained DDS in biological synthetic fluids according to pharmaceutical standards. None of the participant institution is able to complete alone this multidisciplinary, complex research. The consortium, consisting in two prestigious universities, University Politehnica of Bucharest (coordinator), “Carol Davila” University of Medicine and Pharmacy, together with Institute of Physical Chemistry - Romanian Academy and S.C. Polypharma Industries Sibiu the end user, can fulfill these challenges.
It is proposed to investigate DDS based on three type mesoporous carriers, with adequate surface modification, silica, titania and ceria, as well as magnetic core-shell mesoporous silica. The DDS efficiency will be studied via cell viability and Reactive Oxygen Species (ROS) production, as well as by United Pharmacopeia Standards (UPS).
Expected results should be of high scientific level and could be valorized in valuable publications in high ranked journals, one patent and technology transfer towards the end user.
Read more
Perovskites for Photovoltaic Efficient Conversion Technology
Call name:
EEA Research Programme under EEA Financial Mechanism 2009-2014
EEA-JRP-RO-NO-2013-1-0116
2013
-
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); University of Oslo (NO); Science Institute, University of Iceland (IS); Reykjavík University (IS); UNIVERSITATEA BUCURESTI (RO); OPTOELECTRONICA - 2001 S.A. (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
Abstract:
The perovskites, having general formula ABO3, with A and B cations of different valences, are multifunctional materials. Depending on the composition they can behave very differently, having properties specific to metals, dielectrics, ferroelectrics, ferro(ferri)magnetics or super- and semiconductors. Most of these materials are inorganic, as for example the well-known ferroelectrics BaTiO3 or PbTiO3. Other perovskites can be hybrid, if the cation A is replaced with an organic radical. This is the case for halide perovskite compounds (CH3NH3PbX), with X=Br, Cl, I, found recently to possess excellent light absorbing properties in the visible-near infrared spectrum. The use of these materials in solar cells had led to a rapid increased of the photovoltaic conversion efficiency (PCE) in the last year up to about 15 %. The typical solar cell is including a transparent electrode (ITO or FTO, both quite expensive and with deficient materials), a TiO2 layer as electron transporter, a halide perovskite as light absorber, a hole transporter (e.g. spiro-OMeTAD), and a counter electrode (e.g. Ag). All these layers can be deposited by low cost technologies. The combination of the relatively high PCE with the low cost technologies makes this type of hybrid photovoltaic solar cell very attractive for future development.
The main objective of the project is to develop perovskite-based photovoltaic devices towards “all perovskite” solar cells with power conversion efficiencies approaching 20% and fabricated with affordable, environmental friendly materials and technologies. The specific objectives are: 1) to understand the mechanisms behind the high efficiency obtained using a hybrid halide perovskite as visible-light absorber; 2) to increase the PCE by using oxide perovskites with ferroelectric properties (e.g. BaTiO3) as carrier transporter; 3) to develop flexible solar cells by replacing the ITO/FTO transparent electrode with metallic nanowebs. The project goals go well beyond the present state-of-the art by trying to integrate a ferroelectric layer as carrier transporter, taking advantage of the presence of its spontaneous polarization, and by replacing the ITO or FTO electrodes with a metallic nanoweb offering more robustness and flexibility.
The final goal is to have an efficient structure with transparent electrodes on both sides, able to collect not only the sun-light but also the light coming from the artificial sources used, especially during the winter, inside office buildings or large malls. Therefore, the project has a very high innovative potential. On the other hand, in-depth studies will be performed in order to understand the physical phenomena in perovskite solar cells. Ways to enhance the performances can be found if the physics behind the functioning of these devices is well understood and if the fabrication technologies are well mastered.
A broad range of complementary experimental techniques – all available within the consortium - will be used to prepare and characterize these structures. Regarding the preparation, the goal is to use low cost printing like methods for deposition of the component layers in the final device. Other methods (e.g. sputtering, vapour deposition or laser ablation) will be used to prepare samples for investigating the physical properties in relation with the structural, electrical and optical quality. The feedback will be used to improve the deposition methods and the structure architecture. Also, the experimental results will be used as inputs in theoretical models allowing predictions for further enhancement of the PCE. The consortium is composed by 6 partners: 3 from Romania (a national research institute as coordinator, an university and a SME as end-user); 2 from Iceland (2 universities), and 1 from Norway (university). The consortium members have all the necessary skills, expertise and infrastructures to successfully fulfill the project objectives within the requested budget.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.7255, O: 341]