Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
2016
Alina Beatrice
Raileanu
PhD
Associate Professor
-
UNIVERSITATEA "DANUBIUS"
Other affiliations
Researcher
-
UNIVERSITATEA "DUNAREA DE JOS"
(
Romania
)
Researcher | Teaching staff | Manager
Web of Science ResearcherID:
J-8236-2013
Personal public profile link.
Curriculum Vitae (26/05/2020)
Expertise & keywords
Wave modelling
Marine renewable energy
Climate change
Renewable energy
Project management
Data assimilation
Numerical modeling
Projects
Publications & Patents
Entrepreneurship
Reviewer section
CLimate change IMpact Evaluation on future WAve conditions at Regional scale for the Black and Mediterranean seas marine system
Call name:
P 4 - Proiecte de cercetare exploratorie - PCE-2021
PN-III-P4-PCE-2021-0015
2022
-
2024
Role in this project:
Coordinating institution:
UNIVERSITATEA "DUNAREA DE JOS"
Project partners:
UNIVERSITATEA "DUNAREA DE JOS" (RO)
Affiliation:
Project website:
https://climewar.ugal.ro/
Abstract:
The goal of the CLIMEWAR project is to evaluate the impact of climate changes on the future wave climate in the marine system defined by the Black and Mediterranean seas. A multi-model and multiple-scenario ensemble of the marine system wave climate projections over the last 60 years of the 21st Century will be generated based on the results of the SWAN (Simulating WAves Nearshore) model forced with Regional Climate Models (RCMs) driven by different boundary conditions, under RCPs and SSPs scenarios. The potential impact of climate change on the future sea state conditions is estimated by performing comparisons with the ensemble of the present wave climate (1976-2005). The present sea state conditions will be compared with observations and reliable hindcast data. The uncertainties associated with wave climate changes will be identified and quantified. Assuming that the statistical properties of the present climate biases are maintained in the future, bias correction methods will be applied to generate a bias-corrected ensemble of the wave climate projections. The future changes of the mean (annual, seasonal, and monthly) and extreme values of the main wave parameters in both basins will be evaluated, together with their variability and trends. Extreme value analysis will be performed in various key locations.
Read more
Assessment of the Climate Change effects on the WAve conditions in the Black Sea
Call name:
P 4 - Proiecte de Cercetare Exploratorie
PN-III-P4-ID-PCE-2016-0028
2017
-
2019
Role in this project:
Coordinating institution:
UNIVERSITATEA "DUNAREA DE JOS"
Project partners:
UNIVERSITATEA "DUNAREA DE JOS" (RO)
Affiliation:
UNIVERSITATEA "DUNAREA DE JOS" (RO)
Project website:
http://www.im.ugal.ro/ACCWA/ ; https://www.researchgate.net/project/ACCWA-Assessment-of-the-Climate-Change-effects-on-the-WAve-conditions-in-the-Black-Sea
Abstract:
The ACCWA project aims to quantify the present and to explore the future wave climate in the Black Sea basin, with a special focus on the Romanian coastal environment. Extended simulations with the SWAN (Simulating WAves Nearshore) model, forced with Regional Climate Model wind fields, will be performed for three climate periods, of 30-year time-slice each. Slices of thirty years of data are considered by the World Meteorological Organization long enough to calculate an average that is not influenced by year-to-year variability. These time-slices will cover the ‘present’ conditions, regarded as the ‘control’ conditions, when the simulation results will be compared with observations, the ‘near future’ conditions that will cover the mid-21st century, and a century later into the ‘future’ conditions (the last 30-year period of the 21st century). Two sets of simulations corresponding to the future conditions will be made considering the new emission scenarios RCP4.5 and RCP8.5. Statistics (monthly, annual and seasonal) of the main wave parameters will be computed for the entire basin (with a special attention for the significant wave height), and various comparisons between the present and future climates will be made. Changes in the marine extreme events will be evaluated in some key locations. Approaches of extreme value analysis will be implemented for the estimation of the significant wave heights return values in various locations. The methods will be applied to the climatic time series spanning the ‘near future’ and ‘future’ periods, and the results will be compared to those corresponding to the ‘present’ simulations. In this way the future climatic trends of the extreme events will be evaluated. Based on the results obtained, potential future changes in the wave climate of the Black Sea will be assessed, especially to identify the possible trends in the sea wave climate. The expected coastal dynamics will be also assessed.
Read more
Data Assimilation Methods for improving the WAVE predictions in the Romanian nearshore of the Black Sea – DAMWAVE
Call name:
Exploratory Research Projects - PCE-2012 call
PN-II-ID-PCE-2012-4-0089
2013
-
2016
Role in this project:
Coordinating institution:
UNIVERSITATEA "DUNAREA DE JOS"
Project partners:
UNIVERSITATEA "DUNAREA DE JOS" (RO)
Affiliation:
UNIVERSITATEA "DUNAREA DE JOS" (RO)
Project website:
http://www.im.ugal.ro/DAMWAVE/
Abstract:
The present project is aiming towards the development of data assimilation procedures able to improve the wave predictions in the Black Sea basin and in the subsequent computational domains towards the Romanian nearshore. Such a system would provide a better decision support in various situations that can be associated with the usual coastal operations. Assimilation of the wave data is presently an issue of interest supported by the better accuracy and increased resolution of the altimeters that are operating at this moment. In a first approach, the proposed system will be implemented using hindcast wave data in order to provide reanalysis wave fields with higher accuracy. Multi-satellite significant wave heights as for example those provided by http://www.aviso.oceanobs.com, will be considered at this level. A further target would be to implement effective methodologies that would be able to increase also the accuracy of the nowcast and forecast products. Altimeter data from the European Space Agency will be used at this second step. Sequential procedures based on the improved successive corrections and the optimal interpolation methods will be implemented and evaluated in parallel. Alternatively, more complex methods will be also tested, as those based on the Kalman filtering. A balance between the accuracy of the wave predictions and the computational time required by the data assimilation method will be also considered in adopting the final procedure.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.3164, O: 163]